MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubrg Unicode version

Theorem issubrg 15545
Description: The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
issubrg.b  |-  B  =  ( Base `  R
)
issubrg.i  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
issubrg  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )

Proof of Theorem issubrg
Dummy variables  s 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrg 15543 . . . 4  |- SubRing  =  ( r  e.  Ring  |->  { s  e.  ~P ( Base `  r )  |  ( ( rs  s )  e. 
Ring  /\  ( 1r `  r )  e.  s ) } )
21dmmptss 5169 . . 3  |-  dom SubRing  C_  Ring
3 elfvdm 5554 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  dom SubRing )
42, 3sseldi 3178 . 2  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
5 simpll 730 . 2  |-  ( ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) )  ->  R  e.  Ring )
6 fveq2 5525 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
7 issubrg.b . . . . . . . 8  |-  B  =  ( Base `  R
)
86, 7syl6eqr 2333 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  B )
98pweqd 3630 . . . . . 6  |-  ( r  =  R  ->  ~P ( Base `  r )  =  ~P B )
10 oveq1 5865 . . . . . . . 8  |-  ( r  =  R  ->  (
rs  s )  =  ( Rs  s ) )
1110eleq1d 2349 . . . . . . 7  |-  ( r  =  R  ->  (
( rs  s )  e. 
Ring 
<->  ( Rs  s )  e. 
Ring ) )
12 fveq2 5525 . . . . . . . . 9  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
13 issubrg.i . . . . . . . . 9  |-  .1.  =  ( 1r `  R )
1412, 13syl6eqr 2333 . . . . . . . 8  |-  ( r  =  R  ->  ( 1r `  r )  =  .1.  )
1514eleq1d 2349 . . . . . . 7  |-  ( r  =  R  ->  (
( 1r `  r
)  e.  s  <->  .1.  e.  s ) )
1611, 15anbi12d 691 . . . . . 6  |-  ( r  =  R  ->  (
( ( rs  s )  e.  Ring  /\  ( 1r `  r )  e.  s )  <->  ( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) ) )
179, 16rabeqbidv 2783 . . . . 5  |-  ( r  =  R  ->  { s  e.  ~P ( Base `  r )  |  ( ( rs  s )  e. 
Ring  /\  ( 1r `  r )  e.  s ) }  =  {
s  e.  ~P B  |  ( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } )
18 fvex 5539 . . . . . . . 8  |-  ( Base `  R )  e.  _V
197, 18eqeltri 2353 . . . . . . 7  |-  B  e. 
_V
2019pwex 4193 . . . . . 6  |-  ~P B  e.  _V
2120rabex 4165 . . . . 5  |-  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) }  e.  _V
2217, 1, 21fvmpt 5602 . . . 4  |-  ( R  e.  Ring  ->  (SubRing `  R
)  =  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } )
2322eleq2d 2350 . . 3  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  A  e.  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } ) )
24 oveq2 5866 . . . . . . . 8  |-  ( s  =  A  ->  ( Rs  s )  =  ( Rs  A ) )
2524eleq1d 2349 . . . . . . 7  |-  ( s  =  A  ->  (
( Rs  s )  e. 
Ring 
<->  ( Rs  A )  e.  Ring ) )
26 eleq2 2344 . . . . . . 7  |-  ( s  =  A  ->  (  .1.  e.  s  <->  .1.  e.  A ) )
2725, 26anbi12d 691 . . . . . 6  |-  ( s  =  A  ->  (
( ( Rs  s )  e.  Ring  /\  .1.  e.  s )  <->  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) )
2827elrab 2923 . . . . 5  |-  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( A  e.  ~P B  /\  (
( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) )
2919elpw2 4175 . . . . . 6  |-  ( A  e.  ~P B  <->  A  C_  B
)
3029anbi1i 676 . . . . 5  |-  ( ( A  e.  ~P B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) )  <->  ( A  C_  B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) )
31 an12 772 . . . . 5  |-  ( ( A  C_  B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) )  <->  ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) ) )
3228, 30, 313bitri 262 . . . 4  |-  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) ) )
33 ibar 490 . . . . 5  |-  ( R  e.  Ring  ->  ( ( Rs  A )  e.  Ring  <->  ( R  e.  Ring  /\  ( Rs  A )  e.  Ring ) ) )
3433anbi1d 685 . . . 4  |-  ( R  e.  Ring  ->  ( ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) )  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) ) )
3532, 34syl5bb 248 . . 3  |-  ( R  e.  Ring  ->  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) ) )
3623, 35bitrd 244 . 2  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) ) )
374, 5, 36pm5.21nii 342 1  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788    C_ wss 3152   ~Pcpw 3625   dom cdm 4689   ` cfv 5255  (class class class)co 5858   Basecbs 13148   ↾s cress 13149   Ringcrg 15337   1rcur 15339  SubRingcsubrg 15541
This theorem is referenced by:  subrgss  15546  subrgid  15547  subrgrng  15548  subrgrcl  15550  subrg1cl  15553  issubrg2  15565  subsubrg  15571  subrgpropd  15579  issubassa  16064  subrgpsr  16163  cphsubrglem  18613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-subrg 15543
  Copyright terms: Public domain W3C validator