MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubrg2 Structured version   Unicode version

Theorem issubrg2 15890
Description: Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubrg2.b  |-  B  =  ( Base `  R
)
issubrg2.o  |-  .1.  =  ( 1r `  R )
issubrg2.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
issubrg2  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Distinct variable groups:    x, y, A    x, R, y    x,  .x. , y
Allowed substitution hints:    B( x, y)    .1. ( x, y)

Proof of Theorem issubrg2
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 15876 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubGrp `  R ) )
2 issubrg2.o . . . 4  |-  .1.  =  ( 1r `  R )
32subrg1cl 15878 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  .1.  e.  A )
4 issubrg2.t . . . . . 6  |-  .x.  =  ( .r `  R )
54subrgmcl 15882 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  A  /\  y  e.  A
)  ->  ( x  .x.  y )  e.  A
)
653expb 1155 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  .x.  y
)  e.  A )
76ralrimivva 2800 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
81, 3, 73jca 1135 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )
9 simpl 445 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  R  e.  Ring )
10 simpr1 964 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubGrp `  R )
)
11 eqid 2438 . . . . . . . 8  |-  ( Rs  A )  =  ( Rs  A )
1211subgbas 14950 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  A  =  ( Base `  ( Rs  A
) ) )
1310, 12syl 16 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  =  ( Base `  ( Rs  A ) ) )
14 eqid 2438 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
1511, 14ressplusg 13573 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
1610, 15syl 16 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
1711, 4ressmulr 13584 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  .x.  =  ( .r `  ( Rs  A ) ) )
1810, 17syl 16 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
1911subggrp 14949 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( Rs  A
)  e.  Grp )
2010, 19syl 16 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e.  Grp )
21 simpr3 966 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
22 oveq1 6090 . . . . . . . . . 10  |-  ( x  =  u  ->  (
x  .x.  y )  =  ( u  .x.  y ) )
2322eleq1d 2504 . . . . . . . . 9  |-  ( x  =  u  ->  (
( x  .x.  y
)  e.  A  <->  ( u  .x.  y )  e.  A
) )
24 oveq2 6091 . . . . . . . . . 10  |-  ( y  =  v  ->  (
u  .x.  y )  =  ( u  .x.  v ) )
2524eleq1d 2504 . . . . . . . . 9  |-  ( y  =  v  ->  (
( u  .x.  y
)  e.  A  <->  ( u  .x.  v )  e.  A
) )
2623, 25rspc2v 3060 . . . . . . . 8  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A  ->  ( u  .x.  v
)  e.  A ) )
2721, 26syl5com 29 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A
)  ->  ( u  .x.  v )  e.  A
) )
28273impib 1152 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A  /\  v  e.  A )  ->  (
u  .x.  v )  e.  A )
29 issubrg2.b . . . . . . . . . . . 12  |-  B  =  ( Base `  R
)
3029subgss 14947 . . . . . . . . . . 11  |-  ( A  e.  (SubGrp `  R
)  ->  A  C_  B
)
3110, 30syl 16 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  C_  B )
3231sseld 3349 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
u  e.  A  ->  u  e.  B )
)
3331sseld 3349 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
v  e.  A  -> 
v  e.  B ) )
3431sseld 3349 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
w  e.  A  ->  w  e.  B )
)
3532, 33, 343anim123d 1262 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) ) )
3635imp 420 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )
3729, 4rngass 15682 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
3837adantlr 697 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
3936, 38syldan 458 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
4029, 14, 4rngdi 15684 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4140adantlr 697 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4236, 41syldan 458 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4329, 14, 4rngdir 15685 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
4443adantlr 697 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
4536, 44syldan 458 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
46 simpr2 965 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  .1.  e.  A )
4732imp 420 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  u  e.  B )
4829, 4, 2rnglidm 15689 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  u  e.  B )  ->  (  .1.  .x.  u )  =  u )
4948adantlr 697 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  B )  ->  (  .1.  .x.  u )  =  u )
5047, 49syldan 458 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  (  .1.  .x.  u )  =  u )
5129, 4, 2rngridm 15690 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  u  e.  B )  ->  (
u  .x.  .1.  )  =  u )
5251adantlr 697 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  B )  ->  (
u  .x.  .1.  )  =  u )
5347, 52syldan 458 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  (
u  .x.  .1.  )  =  u )
5413, 16, 18, 20, 28, 39, 42, 45, 46, 50, 53isrngd 15700 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e.  Ring )
559, 54jca 520 . . . 4  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( R  e.  Ring  /\  ( Rs  A )  e.  Ring ) )
5631, 46jca 520 . . . 4  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( A  C_  B  /\  .1.  e.  A ) )
5729, 2issubrg 15870 . . . 4  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )
5855, 56, 57sylanbrc 647 . . 3  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubRing `  R )
)
5958ex 425 . 2  |-  ( R  e.  Ring  ->  ( ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)  ->  A  e.  (SubRing `  R ) ) )
608, 59impbid2 197 1  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707    C_ wss 3322   ` cfv 5456  (class class class)co 6083   Basecbs 13471   ↾s cress 13472   +g cplusg 13531   .rcmulr 13532   Grpcgrp 14687  SubGrpcsubg 14940   Ringcrg 15662   1rcur 15664  SubRingcsubrg 15866
This theorem is referenced by:  opprsubrg  15891  subrgint  15892  issubrg3  15898  issubrngd2  16264  mplsubrg  16505  mplind  16564  cnsubrglem  16750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-3 10061  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-0g 13729  df-mnd 14692  df-subg 14943  df-mgp 15651  df-rng 15665  df-ur 15667  df-subrg 15868
  Copyright terms: Public domain W3C validator