MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubrg2 Unicode version

Theorem issubrg2 15581
Description: Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubrg2.b  |-  B  =  ( Base `  R
)
issubrg2.o  |-  .1.  =  ( 1r `  R )
issubrg2.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
issubrg2  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Distinct variable groups:    x, y, A    x, R, y    x,  .x. , y
Allowed substitution hints:    B( x, y)    .1. ( x, y)

Proof of Theorem issubrg2
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 15567 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubGrp `  R ) )
2 issubrg2.o . . . 4  |-  .1.  =  ( 1r `  R )
32subrg1cl 15569 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  .1.  e.  A )
4 issubrg2.t . . . . . 6  |-  .x.  =  ( .r `  R )
54subrgmcl 15573 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  A  /\  y  e.  A
)  ->  ( x  .x.  y )  e.  A
)
653expb 1152 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  .x.  y
)  e.  A )
76ralrimivva 2648 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
81, 3, 73jca 1132 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )
9 simpl 443 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  R  e.  Ring )
10 simpr1 961 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubGrp `  R )
)
11 eqid 2296 . . . . . . . 8  |-  ( Rs  A )  =  ( Rs  A )
1211subgbas 14641 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  A  =  ( Base `  ( Rs  A
) ) )
1310, 12syl 15 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  =  ( Base `  ( Rs  A ) ) )
14 eqid 2296 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
1511, 14ressplusg 13266 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
1610, 15syl 15 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
1711, 4ressmulr 13277 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  .x.  =  ( .r `  ( Rs  A ) ) )
1810, 17syl 15 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
1911subggrp 14640 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( Rs  A
)  e.  Grp )
2010, 19syl 15 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e.  Grp )
21 simpr3 963 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
22 oveq1 5881 . . . . . . . . . 10  |-  ( x  =  u  ->  (
x  .x.  y )  =  ( u  .x.  y ) )
2322eleq1d 2362 . . . . . . . . 9  |-  ( x  =  u  ->  (
( x  .x.  y
)  e.  A  <->  ( u  .x.  y )  e.  A
) )
24 oveq2 5882 . . . . . . . . . 10  |-  ( y  =  v  ->  (
u  .x.  y )  =  ( u  .x.  v ) )
2524eleq1d 2362 . . . . . . . . 9  |-  ( y  =  v  ->  (
( u  .x.  y
)  e.  A  <->  ( u  .x.  v )  e.  A
) )
2623, 25rspc2v 2903 . . . . . . . 8  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A  ->  ( u  .x.  v
)  e.  A ) )
2721, 26syl5com 26 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A
)  ->  ( u  .x.  v )  e.  A
) )
28273impib 1149 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A  /\  v  e.  A )  ->  (
u  .x.  v )  e.  A )
29 issubrg2.b . . . . . . . . . . . 12  |-  B  =  ( Base `  R
)
3029subgss 14638 . . . . . . . . . . 11  |-  ( A  e.  (SubGrp `  R
)  ->  A  C_  B
)
3110, 30syl 15 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  C_  B )
3231sseld 3192 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
u  e.  A  ->  u  e.  B )
)
3331sseld 3192 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
v  e.  A  -> 
v  e.  B ) )
3431sseld 3192 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
w  e.  A  ->  w  e.  B )
)
3532, 33, 343anim123d 1259 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) ) )
3635imp 418 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )
3729, 4rngass 15373 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
3837adantlr 695 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
3936, 38syldan 456 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
4029, 14, 4rngdi 15375 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4140adantlr 695 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4236, 41syldan 456 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4329, 14, 4rngdir 15376 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
4443adantlr 695 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
4536, 44syldan 456 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
46 simpr2 962 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  .1.  e.  A )
4732imp 418 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  u  e.  B )
4829, 4, 2rnglidm 15380 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  u  e.  B )  ->  (  .1.  .x.  u )  =  u )
4948adantlr 695 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  B )  ->  (  .1.  .x.  u )  =  u )
5047, 49syldan 456 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  (  .1.  .x.  u )  =  u )
5129, 4, 2rngridm 15381 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  u  e.  B )  ->  (
u  .x.  .1.  )  =  u )
5251adantlr 695 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  B )  ->  (
u  .x.  .1.  )  =  u )
5347, 52syldan 456 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  (
u  .x.  .1.  )  =  u )
5413, 16, 18, 20, 28, 39, 42, 45, 46, 50, 53isrngd 15391 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e.  Ring )
559, 54jca 518 . . . 4  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( R  e.  Ring  /\  ( Rs  A )  e.  Ring ) )
5631, 46jca 518 . . . 4  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( A  C_  B  /\  .1.  e.  A ) )
5729, 2issubrg 15561 . . . 4  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )
5855, 56, 57sylanbrc 645 . . 3  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubRing `  R )
)
5958ex 423 . 2  |-  ( R  e.  Ring  ->  ( ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)  ->  A  e.  (SubRing `  R ) ) )
608, 59impbid2 195 1  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556    C_ wss 3165   ` cfv 5271  (class class class)co 5874   Basecbs 13164   ↾s cress 13165   +g cplusg 13224   .rcmulr 13225   Grpcgrp 14378  SubGrpcsubg 14631   Ringcrg 15353   1rcur 15355  SubRingcsubrg 15557
This theorem is referenced by:  opprsubrg  15582  subrgint  15583  issubrg3  15589  issubrngd2  15959  mplsubrg  16200  mplind  16259  cnsubrglem  16437
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-0g 13420  df-mnd 14383  df-subg 14634  df-mgp 15342  df-rng 15356  df-ur 15358  df-subrg 15559
  Copyright terms: Public domain W3C validator