MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubrg2 Unicode version

Theorem issubrg2 15565
Description: Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubrg2.b  |-  B  =  ( Base `  R
)
issubrg2.o  |-  .1.  =  ( 1r `  R )
issubrg2.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
issubrg2  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Distinct variable groups:    x, y, A    x, R, y    x,  .x. , y
Allowed substitution hints:    B( x, y)    .1. ( x, y)

Proof of Theorem issubrg2
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 15551 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubGrp `  R ) )
2 issubrg2.o . . . 4  |-  .1.  =  ( 1r `  R )
32subrg1cl 15553 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  .1.  e.  A )
4 issubrg2.t . . . . . 6  |-  .x.  =  ( .r `  R )
54subrgmcl 15557 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  A  /\  y  e.  A
)  ->  ( x  .x.  y )  e.  A
)
653expb 1152 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  .x.  y
)  e.  A )
76ralrimivva 2635 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
81, 3, 73jca 1132 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )
9 simpl 443 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  R  e.  Ring )
10 simpr1 961 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubGrp `  R )
)
11 eqid 2283 . . . . . . . 8  |-  ( Rs  A )  =  ( Rs  A )
1211subgbas 14625 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  A  =  ( Base `  ( Rs  A
) ) )
1310, 12syl 15 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  =  ( Base `  ( Rs  A ) ) )
14 eqid 2283 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
1511, 14ressplusg 13250 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
1610, 15syl 15 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
1711, 4ressmulr 13261 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  .x.  =  ( .r `  ( Rs  A ) ) )
1810, 17syl 15 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
1911subggrp 14624 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( Rs  A
)  e.  Grp )
2010, 19syl 15 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e.  Grp )
21 simpr3 963 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
22 oveq1 5865 . . . . . . . . . 10  |-  ( x  =  u  ->  (
x  .x.  y )  =  ( u  .x.  y ) )
2322eleq1d 2349 . . . . . . . . 9  |-  ( x  =  u  ->  (
( x  .x.  y
)  e.  A  <->  ( u  .x.  y )  e.  A
) )
24 oveq2 5866 . . . . . . . . . 10  |-  ( y  =  v  ->  (
u  .x.  y )  =  ( u  .x.  v ) )
2524eleq1d 2349 . . . . . . . . 9  |-  ( y  =  v  ->  (
( u  .x.  y
)  e.  A  <->  ( u  .x.  v )  e.  A
) )
2623, 25rspc2v 2890 . . . . . . . 8  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A  ->  ( u  .x.  v
)  e.  A ) )
2721, 26syl5com 26 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A
)  ->  ( u  .x.  v )  e.  A
) )
28273impib 1149 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A  /\  v  e.  A )  ->  (
u  .x.  v )  e.  A )
29 issubrg2.b . . . . . . . . . . . 12  |-  B  =  ( Base `  R
)
3029subgss 14622 . . . . . . . . . . 11  |-  ( A  e.  (SubGrp `  R
)  ->  A  C_  B
)
3110, 30syl 15 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  C_  B )
3231sseld 3179 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
u  e.  A  ->  u  e.  B )
)
3331sseld 3179 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
v  e.  A  -> 
v  e.  B ) )
3431sseld 3179 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
w  e.  A  ->  w  e.  B )
)
3532, 33, 343anim123d 1259 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) ) )
3635imp 418 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )
3729, 4rngass 15357 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
3837adantlr 695 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
3936, 38syldan 456 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
4029, 14, 4rngdi 15359 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4140adantlr 695 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4236, 41syldan 456 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4329, 14, 4rngdir 15360 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
4443adantlr 695 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
4536, 44syldan 456 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
46 simpr2 962 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  .1.  e.  A )
4732imp 418 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  u  e.  B )
4829, 4, 2rnglidm 15364 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  u  e.  B )  ->  (  .1.  .x.  u )  =  u )
4948adantlr 695 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  B )  ->  (  .1.  .x.  u )  =  u )
5047, 49syldan 456 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  (  .1.  .x.  u )  =  u )
5129, 4, 2rngridm 15365 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  u  e.  B )  ->  (
u  .x.  .1.  )  =  u )
5251adantlr 695 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  B )  ->  (
u  .x.  .1.  )  =  u )
5347, 52syldan 456 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  /\  u  e.  A )  ->  (
u  .x.  .1.  )  =  u )
5413, 16, 18, 20, 28, 39, 42, 45, 46, 50, 53isrngd 15375 . . . . 5  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e.  Ring )
559, 54jca 518 . . . 4  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( R  e.  Ring  /\  ( Rs  A )  e.  Ring ) )
5631, 46jca 518 . . . 4  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( A  C_  B  /\  .1.  e.  A ) )
5729, 2issubrg 15545 . . . 4  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )
5855, 56, 57sylanbrc 645 . . 3  |-  ( ( R  e.  Ring  /\  ( A  e.  (SubGrp `  R
)  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubRing `  R )
)
5958ex 423 . 2  |-  ( R  e.  Ring  ->  ( ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)  ->  A  e.  (SubRing `  R ) ) )
608, 59impbid2 195 1  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152   ` cfv 5255  (class class class)co 5858   Basecbs 13148   ↾s cress 13149   +g cplusg 13208   .rcmulr 13209   Grpcgrp 14362  SubGrpcsubg 14615   Ringcrg 15337   1rcur 15339  SubRingcsubrg 15541
This theorem is referenced by:  opprsubrg  15566  subrgint  15567  issubrg3  15573  issubrngd2  15943  mplsubrg  16184  mplind  16243  cnsubrglem  16421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-0g 13404  df-mnd 14367  df-subg 14618  df-mgp 15326  df-rng 15340  df-ur 15342  df-subrg 15543
  Copyright terms: Public domain W3C validator