MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist0-2 Unicode version

Theorem ist0-2 17072
Description: The predicate "is a T0 space". (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ist0-2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Kol2  <->  A. x  e.  X  A. y  e.  X  ( A. o  e.  J  ( x  e.  o  <->  y  e.  o )  ->  x  =  y )
) )
Distinct variable groups:    x, y,
o, J    o, X, x, y

Proof of Theorem ist0-2
StepHypRef Expression
1 topontop 16664 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2 eqid 2283 . . . . 5  |-  U. J  =  U. J
32ist0 17048 . . . 4  |-  ( J  e.  Kol2  <->  ( J  e. 
Top  /\  A. x  e.  U. J A. y  e.  U. J ( A. o  e.  J  (
x  e.  o  <->  y  e.  o )  ->  x  =  y ) ) )
43baib 871 . . 3  |-  ( J  e.  Top  ->  ( J  e.  Kol2  <->  A. x  e.  U. J A. y  e.  U. J ( A. o  e.  J  (
x  e.  o  <->  y  e.  o )  ->  x  =  y ) ) )
51, 4syl 15 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Kol2  <->  A. x  e.  U. J A. y  e.  U. J ( A. o  e.  J  ( x  e.  o  <->  y  e.  o )  ->  x  =  y ) ) )
6 toponuni 16665 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
76raleqdv 2742 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( A. y  e.  X  ( A. o  e.  J  ( x  e.  o  <->  y  e.  o )  ->  x  =  y )  <->  A. y  e.  U. J
( A. o  e.  J  ( x  e.  o  <->  y  e.  o )  ->  x  =  y ) ) )
86, 7raleqbidv 2748 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( A. x  e.  X  A. y  e.  X  ( A. o  e.  J  ( x  e.  o  <->  y  e.  o )  ->  x  =  y )  <->  A. x  e.  U. J A. y  e.  U. J
( A. o  e.  J  ( x  e.  o  <->  y  e.  o )  ->  x  =  y ) ) )
95, 8bitr4d 247 1  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Kol2  <->  A. x  e.  X  A. y  e.  X  ( A. o  e.  J  ( x  e.  o  <->  y  e.  o )  ->  x  =  y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684   A.wral 2543   U.cuni 3827   ` cfv 5255   Topctop 16631  TopOnctopon 16632   Kol2ct0 17034
This theorem is referenced by:  ist0-3  17073  t1t0  17076  ist0-4  17420  kqt0lem  17427  tgpt0  17801  onsuct0  24880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-topon 16639  df-t0 17041
  Copyright terms: Public domain W3C validator