MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist0-3 Unicode version

Theorem ist0-3 17371
Description: The predicate "is a T0 space," expressed in more familiar terms. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
ist0-3  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Kol2  <->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. o  e.  J  ( ( x  e.  o  /\  -.  y  e.  o )  \/  ( -.  x  e.  o  /\  y  e.  o
) ) ) ) )
Distinct variable groups:    x, y,
o, J    o, X, x, y

Proof of Theorem ist0-3
StepHypRef Expression
1 ist0-2 17370 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Kol2  <->  A. x  e.  X  A. y  e.  X  ( A. o  e.  J  ( x  e.  o  <->  y  e.  o )  ->  x  =  y )
) )
2 con34b 284 . . . 4  |-  ( ( A. o  e.  J  ( x  e.  o  <->  y  e.  o )  ->  x  =  y )  <->  ( -.  x  =  y  ->  -.  A. o  e.  J  ( x  e.  o  <->  y  e.  o ) ) )
3 df-ne 2577 . . . . 5  |-  ( x  =/=  y  <->  -.  x  =  y )
4 xor 862 . . . . . . . 8  |-  ( -.  ( x  e.  o  <-> 
y  e.  o )  <-> 
( ( x  e.  o  /\  -.  y  e.  o )  \/  (
y  e.  o  /\  -.  x  e.  o
) ) )
5 ancom 438 . . . . . . . . 9  |-  ( ( y  e.  o  /\  -.  x  e.  o
)  <->  ( -.  x  e.  o  /\  y  e.  o ) )
65orbi2i 506 . . . . . . . 8  |-  ( ( ( x  e.  o  /\  -.  y  e.  o )  \/  (
y  e.  o  /\  -.  x  e.  o
) )  <->  ( (
x  e.  o  /\  -.  y  e.  o
)  \/  ( -.  x  e.  o  /\  y  e.  o )
) )
74, 6bitri 241 . . . . . . 7  |-  ( -.  ( x  e.  o  <-> 
y  e.  o )  <-> 
( ( x  e.  o  /\  -.  y  e.  o )  \/  ( -.  x  e.  o  /\  y  e.  o
) ) )
87rexbii 2699 . . . . . 6  |-  ( E. o  e.  J  -.  ( x  e.  o  <->  y  e.  o )  <->  E. o  e.  J  ( (
x  e.  o  /\  -.  y  e.  o
)  \/  ( -.  x  e.  o  /\  y  e.  o )
) )
9 rexnal 2685 . . . . . 6  |-  ( E. o  e.  J  -.  ( x  e.  o  <->  y  e.  o )  <->  -.  A. o  e.  J  ( x  e.  o  <->  y  e.  o ) )
108, 9bitr3i 243 . . . . 5  |-  ( E. o  e.  J  ( ( x  e.  o  /\  -.  y  e.  o )  \/  ( -.  x  e.  o  /\  y  e.  o
) )  <->  -.  A. o  e.  J  ( x  e.  o  <->  y  e.  o ) )
113, 10imbi12i 317 . . . 4  |-  ( ( x  =/=  y  ->  E. o  e.  J  ( ( x  e.  o  /\  -.  y  e.  o )  \/  ( -.  x  e.  o  /\  y  e.  o
) ) )  <->  ( -.  x  =  y  ->  -. 
A. o  e.  J  ( x  e.  o  <->  y  e.  o ) ) )
122, 11bitr4i 244 . . 3  |-  ( ( A. o  e.  J  ( x  e.  o  <->  y  e.  o )  ->  x  =  y )  <->  ( x  =/=  y  ->  E. o  e.  J  ( ( x  e.  o  /\  -.  y  e.  o )  \/  ( -.  x  e.  o  /\  y  e.  o
) ) ) )
13122ralbii 2700 . 2  |-  ( A. x  e.  X  A. y  e.  X  ( A. o  e.  J  ( x  e.  o  <->  y  e.  o )  ->  x  =  y )  <->  A. x  e.  X  A. y  e.  X  (
x  =/=  y  ->  E. o  e.  J  ( ( x  e.  o  /\  -.  y  e.  o )  \/  ( -.  x  e.  o  /\  y  e.  o
) ) ) )
141, 13syl6bb 253 1  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Kol2  <->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. o  e.  J  ( ( x  e.  o  /\  -.  y  e.  o )  \/  ( -.  x  e.  o  /\  y  e.  o
) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    e. wcel 1721    =/= wne 2575   A.wral 2674   E.wrex 2675   ` cfv 5421  TopOnctopon 16922   Kol2ct0 17332
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5385  df-fun 5423  df-fv 5429  df-topon 16929  df-t0 17339
  Copyright terms: Public domain W3C validator