MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istgp2 Unicode version

Theorem istgp2 17774
Description: A group with a topology is a topological group iff the subtraction operation is continuous. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tgpsubcn.2  |-  J  =  ( TopOpen `  G )
tgpsubcn.3  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
istgp2  |-  ( G  e.  TopGrp 
<->  ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) ) )

Proof of Theorem istgp2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpgrp 17761 . . 3  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
2 tgptps 17763 . . 3  |-  ( G  e.  TopGrp  ->  G  e.  TopSp )
3 tgpsubcn.2 . . . 4  |-  J  =  ( TopOpen `  G )
4 tgpsubcn.3 . . . 4  |-  .-  =  ( -g `  G )
53, 4tgpsubcn 17773 . . 3  |-  ( G  e.  TopGrp  ->  .-  e.  (
( J  tX  J
)  Cn  J ) )
61, 2, 53jca 1132 . 2  |-  ( G  e.  TopGrp  ->  ( G  e. 
Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J ) ) )
7 simp1 955 . . 3  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  G  e.  Grp )
8 grpmnd 14494 . . . . 5  |-  ( G  e.  Grp  ->  G  e.  Mnd )
983ad2ant1 976 . . . 4  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  G  e.  Mnd )
10 simp2 956 . . . 4  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  G  e.  TopSp )
11 eqid 2283 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
12 eqid 2283 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
13 eqid 2283 . . . . . . . 8  |-  ( inv g `  G )  =  ( inv g `  G )
1473ad2ant1 976 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  G  e.  Grp )
15 simp2 956 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  x  e.  ( Base `  G )
)
16 simp3 957 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  y  e.  ( Base `  G )
)
1711, 12, 4, 13, 14, 15, 16grpsubinv 14541 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  ( x  .-  ( ( inv g `  G ) `  y
) )  =  ( x ( +g  `  G
) y ) )
1817mpt2eq3dva 5912 . . . . . 6  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  (
x  e.  ( Base `  G ) ,  y  e.  ( Base `  G
)  |->  ( x  .-  ( ( inv g `  G ) `  y
) ) )  =  ( x  e.  (
Base `  G ) ,  y  e.  ( Base `  G )  |->  ( x ( +g  `  G
) y ) ) )
19 eqid 2283 . . . . . . 7  |-  ( + f `  G )  =  ( + f `  G )
2011, 12, 19plusffval 14379 . . . . . 6  |-  ( + f `  G )  =  ( x  e.  ( Base `  G
) ,  y  e.  ( Base `  G
)  |->  ( x ( +g  `  G ) y ) )
2118, 20syl6eqr 2333 . . . . 5  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  (
x  e.  ( Base `  G ) ,  y  e.  ( Base `  G
)  |->  ( x  .-  ( ( inv g `  G ) `  y
) ) )  =  ( + f `  G ) )
2211, 3istps 16674 . . . . . . 7  |-  ( G  e.  TopSp 
<->  J  e.  (TopOn `  ( Base `  G )
) )
2310, 22sylib 188 . . . . . 6  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  J  e.  (TopOn `  ( Base `  G ) ) )
2423, 23cnmpt1st 17362 . . . . . 6  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  (
x  e.  ( Base `  G ) ,  y  e.  ( Base `  G
)  |->  x )  e.  ( ( J  tX  J )  Cn  J
) )
2523, 23cnmpt2nd 17363 . . . . . . 7  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  (
x  e.  ( Base `  G ) ,  y  e.  ( Base `  G
)  |->  y )  e.  ( ( J  tX  J )  Cn  J
) )
2611, 13grpinvf 14526 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  ( inv g `  G ) : ( Base `  G
) --> ( Base `  G
) )
27263ad2ant1 976 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  ( inv g `  G ) : ( Base `  G
) --> ( Base `  G
) )
2827feqmptd 5575 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  ( inv g `  G )  =  ( x  e.  ( Base `  G
)  |->  ( ( inv g `  G ) `
 x ) ) )
29 eqid 2283 . . . . . . . . . . . 12  |-  ( 0g
`  G )  =  ( 0g `  G
)
3011, 4, 13, 29grpinvval2 14549 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( ( inv g `  G ) `  x
)  =  ( ( 0g `  G ) 
.-  x ) )
317, 30sylan 457 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  /\  x  e.  ( Base `  G
) )  ->  (
( inv g `  G ) `  x
)  =  ( ( 0g `  G ) 
.-  x ) )
3231mpteq2dva 4106 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  (
x  e.  ( Base `  G )  |->  ( ( inv g `  G
) `  x )
)  =  ( x  e.  ( Base `  G
)  |->  ( ( 0g
`  G )  .-  x ) ) )
3328, 32eqtrd 2315 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  ( inv g `  G )  =  ( x  e.  ( Base `  G
)  |->  ( ( 0g
`  G )  .-  x ) ) )
3411, 29grpidcl 14510 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
35343ad2ant1 976 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  ( 0g `  G )  e.  ( Base `  G
) )
3623, 23, 35cnmptc 17356 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  (
x  e.  ( Base `  G )  |->  ( 0g
`  G ) )  e.  ( J  Cn  J ) )
3723cnmptid 17355 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  (
x  e.  ( Base `  G )  |->  x )  e.  ( J  Cn  J ) )
38 simp3 957 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  .-  e.  ( ( J  tX  J )  Cn  J
) )
3923, 36, 37, 38cnmpt12f 17360 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  (
x  e.  ( Base `  G )  |->  ( ( 0g `  G ) 
.-  x ) )  e.  ( J  Cn  J ) )
4033, 39eqeltrd 2357 . . . . . . 7  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  ( inv g `  G )  e.  ( J  Cn  J ) )
4123, 23, 25, 40cnmpt21f 17366 . . . . . 6  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  (
x  e.  ( Base `  G ) ,  y  e.  ( Base `  G
)  |->  ( ( inv g `  G ) `
 y ) )  e.  ( ( J 
tX  J )  Cn  J ) )
4223, 23, 24, 41, 38cnmpt22f 17369 . . . . 5  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  (
x  e.  ( Base `  G ) ,  y  e.  ( Base `  G
)  |->  ( x  .-  ( ( inv g `  G ) `  y
) ) )  e.  ( ( J  tX  J )  Cn  J
) )
4321, 42eqeltrrd 2358 . . . 4  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  ( + f `  G )  e.  ( ( J 
tX  J )  Cn  J ) )
4419, 3istmd 17757 . . . 4  |-  ( G  e. TopMnd 
<->  ( G  e.  Mnd  /\  G  e.  TopSp  /\  ( + f `  G )  e.  ( ( J 
tX  J )  Cn  J ) ) )
459, 10, 43, 44syl3anbrc 1136 . . 3  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  G  e. TopMnd )
463, 13istgp 17760 . . 3  |-  ( G  e.  TopGrp 
<->  ( G  e.  Grp  /\  G  e. TopMnd  /\  ( inv g `  G )  e.  ( J  Cn  J ) ) )
477, 45, 40, 46syl3anbrc 1136 . 2  |-  ( ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) )  ->  G  e.  TopGrp )
486, 47impbii 180 1  |-  ( G  e.  TopGrp 
<->  ( G  e.  Grp  /\  G  e.  TopSp  /\  .-  e.  ( ( J  tX  J )  Cn  J
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ w3a 934    = wceq 1623    e. wcel 1684    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   Basecbs 13148   +g cplusg 13208   TopOpenctopn 13326   0gc0g 13400   Mndcmnd 14361   Grpcgrp 14362   inv gcminusg 14363   + fcplusf 14364   -gcsg 14365  TopOnctopon 16632   TopSpctps 16634    Cn ccn 16954    tX ctx 17255  TopMndctmd 17753   TopGrpctgp 17754
This theorem is referenced by:  distgp  17782  indistgp  17783  divstgplem  17803  ngptgp  18152  cnfldtgp  18373
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-map 6774  df-topgen 13344  df-0g 13404  df-mnd 14367  df-plusf 14368  df-grp 14489  df-minusg 14490  df-sbg 14491  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cn 16957  df-cnp 16958  df-tx 17257  df-tmd 17755  df-tgp 17756
  Copyright terms: Public domain W3C validator