Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istotbnd3 Unicode version

Theorem istotbnd3 26173
Description: A metric space is totally bounded iff there is a finite ε-net for every positive ε. This differs from the definition in providing a finite set of ball centers rather than a finite set of balls. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
istotbnd3  |-  ( M  e.  ( TotBnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
Distinct variable groups:    v, d, x, M    X, d, v, x

Proof of Theorem istotbnd3
Dummy variables  b 
f  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istotbnd 26171 . 2  |-  ( M  e.  ( TotBnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. w  e. 
Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
2 oveq1 6029 . . . . . . . . . . . 12  |-  ( x  =  ( f `  b )  ->  (
x ( ball `  M
) d )  =  ( ( f `  b ) ( ball `  M ) d ) )
32eqeq2d 2400 . . . . . . . . . . 11  |-  ( x  =  ( f `  b )  ->  (
b  =  ( x ( ball `  M
) d )  <->  b  =  ( ( f `  b ) ( ball `  M ) d ) ) )
43ac6sfi 7289 . . . . . . . . . 10  |-  ( ( w  e.  Fin  /\  A. b  e.  w  E. x  e.  X  b  =  ( x (
ball `  M )
d ) )  ->  E. f ( f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )
54ex 424 . . . . . . . . 9  |-  ( w  e.  Fin  ->  ( A. b  e.  w  E. x  e.  X  b  =  ( x
( ball `  M )
d )  ->  E. f
( f : w --> X  /\  A. b  e.  w  b  =  ( ( f `  b ) ( ball `  M ) d ) ) ) )
65ad2antlr 708 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  U. w  =  X )  ->  ( A. b  e.  w  E. x  e.  X  b  =  ( x
( ball `  M )
d )  ->  E. f
( f : w --> X  /\  A. b  e.  w  b  =  ( ( f `  b ) ( ball `  M ) d ) ) ) )
7 simprrl 741 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  f :
w --> X )
8 frn 5539 . . . . . . . . . . . . 13  |-  ( f : w --> X  ->  ran  f  C_  X )
97, 8syl 16 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  ran  f  C_  X )
10 simplr 732 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  w  e.  Fin )
11 ffn 5533 . . . . . . . . . . . . . . 15  |-  ( f : w --> X  -> 
f  Fn  w )
127, 11syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  f  Fn  w )
13 dffn4 5601 . . . . . . . . . . . . . 14  |-  ( f  Fn  w  <->  f :
w -onto-> ran  f )
1412, 13sylib 189 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  f :
w -onto-> ran  f )
15 fofi 7330 . . . . . . . . . . . . 13  |-  ( ( w  e.  Fin  /\  f : w -onto-> ran  f
)  ->  ran  f  e. 
Fin )
1610, 14, 15syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  ran  f  e. 
Fin )
17 elfpw 7345 . . . . . . . . . . . 12  |-  ( ran  f  e.  ( ~P X  i^i  Fin )  <->  ( ran  f  C_  X  /\  ran  f  e.  Fin ) )
189, 16, 17sylanbrc 646 . . . . . . . . . . 11  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  ran  f  e.  ( ~P X  i^i  Fin ) )
192eleq2d 2456 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( f `  b )  ->  (
v  e.  ( x ( ball `  M
) d )  <->  v  e.  ( ( f `  b ) ( ball `  M ) d ) ) )
2019rexrn 5813 . . . . . . . . . . . . . . 15  |-  ( f  Fn  w  ->  ( E. x  e.  ran  f  v  e.  (
x ( ball `  M
) d )  <->  E. b  e.  w  v  e.  ( ( f `  b ) ( ball `  M ) d ) ) )
2112, 20syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  ( E. x  e.  ran  f  v  e.  ( x (
ball `  M )
d )  <->  E. b  e.  w  v  e.  ( ( f `  b ) ( ball `  M ) d ) ) )
22 eliun 4041 . . . . . . . . . . . . . 14  |-  ( v  e.  U_ x  e. 
ran  f ( x ( ball `  M
) d )  <->  E. x  e.  ran  f  v  e.  ( x ( ball `  M ) d ) )
23 eliun 4041 . . . . . . . . . . . . . 14  |-  ( v  e.  U_ b  e.  w  ( ( f `
 b ) (
ball `  M )
d )  <->  E. b  e.  w  v  e.  ( ( f `  b ) ( ball `  M ) d ) )
2421, 22, 233bitr4g 280 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  ( v  e.  U_ x  e.  ran  f ( x (
ball `  M )
d )  <->  v  e.  U_ b  e.  w  ( ( f `  b
) ( ball `  M
) d ) ) )
2524eqrdv 2387 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  U_ x  e. 
ran  f ( x ( ball `  M
) d )  = 
U_ b  e.  w  ( ( f `  b ) ( ball `  M ) d ) )
26 simprrr 742 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  A. b  e.  w  b  =  ( ( f `  b ) ( ball `  M ) d ) )
27 iuneq2 4053 . . . . . . . . . . . . 13  |-  ( A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d )  ->  U_ b  e.  w  b  =  U_ b  e.  w  ( ( f `  b
) ( ball `  M
) d ) )
2826, 27syl 16 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  U_ b  e.  w  b  =  U_ b  e.  w  (
( f `  b
) ( ball `  M
) d ) )
29 uniiun 4087 . . . . . . . . . . . . 13  |-  U. w  =  U_ b  e.  w  b
30 simprl 733 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  U. w  =  X )
3129, 30syl5eqr 2435 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  U_ b  e.  w  b  =  X )
3225, 28, 313eqtr2d 2427 . . . . . . . . . . 11  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  U_ x  e. 
ran  f ( x ( ball `  M
) d )  =  X )
33 iuneq1 4050 . . . . . . . . . . . . 13  |-  ( v  =  ran  f  ->  U_ x  e.  v 
( x ( ball `  M ) d )  =  U_ x  e. 
ran  f ( x ( ball `  M
) d ) )
3433eqeq1d 2397 . . . . . . . . . . . 12  |-  ( v  =  ran  f  -> 
( U_ x  e.  v  ( x ( ball `  M ) d )  =  X  <->  U_ x  e. 
ran  f ( x ( ball `  M
) d )  =  X ) )
3534rspcev 2997 . . . . . . . . . . 11  |-  ( ( ran  f  e.  ( ~P X  i^i  Fin )  /\  U_ x  e. 
ran  f ( x ( ball `  M
) d )  =  X )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X )
3618, 32, 35syl2anc 643 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X )
3736expr 599 . . . . . . . . 9  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  U. w  =  X )  ->  (
( f : w --> X  /\  A. b  e.  w  b  =  ( ( f `  b ) ( ball `  M ) d ) )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
3837exlimdv 1643 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  U. w  =  X )  ->  ( E. f ( f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  M ) d )  =  X ) )
396, 38syld 42 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  U. w  =  X )  ->  ( A. b  e.  w  E. x  e.  X  b  =  ( x
( ball `  M )
d )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
4039expimpd 587 . . . . . 6  |-  ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  ->  (
( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
4140rexlimdva 2775 . . . . 5  |-  ( M  e.  ( Met `  X
)  ->  ( E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x (
ball `  M )
d ) )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  M ) d )  =  X ) )
42 elfpw 7345 . . . . . . . . . . 11  |-  ( v  e.  ( ~P X  i^i  Fin )  <->  ( v  C_  X  /\  v  e. 
Fin ) )
4342simprbi 451 . . . . . . . . . 10  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  e.  Fin )
4443ad2antrl 709 . . . . . . . . 9  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  v  e.  Fin )
45 mptfi 7343 . . . . . . . . 9  |-  ( v  e.  Fin  ->  (
x  e.  v  |->  ( x ( ball `  M
) d ) )  e.  Fin )
46 rnfi 7329 . . . . . . . . 9  |-  ( ( x  e.  v  |->  ( x ( ball `  M
) d ) )  e.  Fin  ->  ran  ( x  e.  v  |->  ( x ( ball `  M ) d ) )  e.  Fin )
4744, 45, 463syl 19 . . . . . . . 8  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  e.  Fin )
48 ovex 6047 . . . . . . . . . 10  |-  ( x ( ball `  M
) d )  e. 
_V
4948dfiun3 5066 . . . . . . . . 9  |-  U_ x  e.  v  ( x
( ball `  M )
d )  =  U. ran  ( x  e.  v 
|->  ( x ( ball `  M ) d ) )
50 simprr 734 . . . . . . . . 9  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  U_ x  e.  v  ( x ( ball `  M ) d )  =  X )
5149, 50syl5eqr 2435 . . . . . . . 8  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  U. ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  =  X )
52 eqid 2389 . . . . . . . . . 10  |-  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  =  ( x  e.  v  |->  ( x (
ball `  M )
d ) )
5352rnmpt 5058 . . . . . . . . 9  |-  ran  (
x  e.  v  |->  ( x ( ball `  M
) d ) )  =  { b  |  E. x  e.  v  b  =  ( x ( ball `  M
) d ) }
5442simplbi 447 . . . . . . . . . . . 12  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  C_  X )
5554ad2antrl 709 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  v  C_  X
)
56 ssrexv 3353 . . . . . . . . . . 11  |-  ( v 
C_  X  ->  ( E. x  e.  v 
b  =  ( x ( ball `  M
) d )  ->  E. x  e.  X  b  =  ( x
( ball `  M )
d ) ) )
5755, 56syl 16 . . . . . . . . . 10  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  ( E. x  e.  v  b  =  ( x ( ball `  M ) d )  ->  E. x  e.  X  b  =  ( x
( ball `  M )
d ) ) )
5857ss2abdv 3361 . . . . . . . . 9  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  { b  |  E. x  e.  v  b  =  ( x ( ball `  M
) d ) } 
C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) } )
5953, 58syl5eqss 3337 . . . . . . . 8  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) ) 
C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) } )
60 unieq 3968 . . . . . . . . . . 11  |-  ( w  =  ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  ->  U. w  =  U. ran  ( x  e.  v 
|->  ( x ( ball `  M ) d ) ) )
6160eqeq1d 2397 . . . . . . . . . 10  |-  ( w  =  ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  ->  ( U. w  =  X  <->  U. ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  =  X ) )
62 ssabral 3359 . . . . . . . . . . 11  |-  ( w 
C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) }  <->  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) )
63 sseq1 3314 . . . . . . . . . . 11  |-  ( w  =  ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  ->  ( w  C_  { b  |  E. x  e.  X  b  =  ( x ( ball `  M ) d ) }  <->  ran  ( x  e.  v  |->  ( x (
ball `  M )
d ) )  C_  { b  |  E. x  e.  X  b  =  ( x ( ball `  M ) d ) } ) )
6462, 63syl5bbr 251 . . . . . . . . . 10  |-  ( w  =  ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  ->  ( A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d )  <->  ran  ( x  e.  v 
|->  ( x ( ball `  M ) d ) )  C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) } ) )
6561, 64anbi12d 692 . . . . . . . . 9  |-  ( w  =  ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  ->  ( ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x (
ball `  M )
d ) )  <->  ( U. ran  ( x  e.  v 
|->  ( x ( ball `  M ) d ) )  =  X  /\  ran  ( x  e.  v 
|->  ( x ( ball `  M ) d ) )  C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) } ) ) )
6665rspcev 2997 . . . . . . . 8  |-  ( ( ran  ( x  e.  v  |->  ( x (
ball `  M )
d ) )  e. 
Fin  /\  ( U. ran  ( x  e.  v 
|->  ( x ( ball `  M ) d ) )  =  X  /\  ran  ( x  e.  v 
|->  ( x ( ball `  M ) d ) )  C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) } ) )  ->  E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) )
6747, 51, 59, 66syl12anc 1182 . . . . . . 7  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M
) d ) ) )
6867expr 599 . . . . . 6  |-  ( ( M  e.  ( Met `  X )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  ( U_ x  e.  v 
( x ( ball `  M ) d )  =  X  ->  E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
6968rexlimdva 2775 . . . . 5  |-  ( M  e.  ( Met `  X
)  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  (
x ( ball `  M
) d )  =  X  ->  E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
7041, 69impbid 184 . . . 4  |-  ( M  e.  ( Met `  X
)  ->  ( E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x (
ball `  M )
d ) )  <->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
7170ralbidv 2671 . . 3  |-  ( M  e.  ( Met `  X
)  ->  ( A. d  e.  RR+  E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) )  <->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  M ) d )  =  X ) )
7271pm5.32i 619 . 2  |-  ( ( M  e.  ( Met `  X )  /\  A. d  e.  RR+  E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) )  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
731, 72bitri 241 1  |-  ( M  e.  ( TotBnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   {cab 2375   A.wral 2651   E.wrex 2652    i^i cin 3264    C_ wss 3265   ~Pcpw 3744   U.cuni 3959   U_ciun 4037    e. cmpt 4209   ran crn 4821    Fn wfn 5391   -->wf 5392   -onto->wfo 5394   ` cfv 5396  (class class class)co 6022   Fincfn 7047   RR+crp 10546   Metcme 16615   ballcbl 16616   TotBndctotbnd 26168
This theorem is referenced by:  0totbnd  26175  sstotbnd2  26176  equivtotbnd  26180  totbndbnd  26191  prdstotbnd  26196
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-en 7048  df-dom 7049  df-fin 7051  df-totbnd 26170
  Copyright terms: Public domain W3C validator