MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istps3OLD Structured version   Unicode version

Theorem istps3OLD 16987
Description: A standard textbook definition of a topological space. (Contributed by NM, 18-Jul-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
istps3OLD  |-  ( <. A ,  J >.  e. 
TopSp OLD  <->  ( ( J 
C_  ~P A  /\  (/)  e.  J  /\  A  e.  J
)  /\  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
Distinct variable groups:    x, y, A    x, J, y

Proof of Theorem istps3OLD
StepHypRef Expression
1 istps2OLD 16986 . 2  |-  ( <. A ,  J >.  e. 
TopSp OLD  <->  ( ( J  e.  Top  /\  J  C_ 
~P A )  /\  ( (/)  e.  J  /\  A  e.  J )
) )
2 anass 631 . 2  |-  ( ( ( J  e.  Top  /\  J  C_  ~P A
)  /\  ( (/)  e.  J  /\  A  e.  J
) )  <->  ( J  e.  Top  /\  ( J 
C_  ~P A  /\  ( (/) 
e.  J  /\  A  e.  J ) ) ) )
3 ancom 438 . . 3  |-  ( ( J  e.  Top  /\  ( J  C_  ~P A  /\  ( (/)  e.  J  /\  A  e.  J
) ) )  <->  ( ( J  C_  ~P A  /\  ( (/)  e.  J  /\  A  e.  J )
)  /\  J  e.  Top ) )
4 3anass 940 . . . 4  |-  ( ( J  C_  ~P A  /\  (/)  e.  J  /\  A  e.  J )  <->  ( J  C_  ~P A  /\  ( (/)  e.  J  /\  A  e.  J
) ) )
54anbi1i 677 . . 3  |-  ( ( ( J  C_  ~P A  /\  (/)  e.  J  /\  A  e.  J )  /\  J  e.  Top ) 
<->  ( ( J  C_  ~P A  /\  ( (/) 
e.  J  /\  A  e.  J ) )  /\  J  e.  Top )
)
6 pwexg 4383 . . . . . . 7  |-  ( A  e.  J  ->  ~P A  e.  _V )
7 ssexg 4349 . . . . . . 7  |-  ( ( J  C_  ~P A  /\  ~P A  e.  _V )  ->  J  e.  _V )
86, 7sylan2 461 . . . . . 6  |-  ( ( J  C_  ~P A  /\  A  e.  J
)  ->  J  e.  _V )
983adant2 976 . . . . 5  |-  ( ( J  C_  ~P A  /\  (/)  e.  J  /\  A  e.  J )  ->  J  e.  _V )
10 istopg 16968 . . . . 5  |-  ( J  e.  _V  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
119, 10syl 16 . . . 4  |-  ( ( J  C_  ~P A  /\  (/)  e.  J  /\  A  e.  J )  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
1211pm5.32i 619 . . 3  |-  ( ( ( J  C_  ~P A  /\  (/)  e.  J  /\  A  e.  J )  /\  J  e.  Top ) 
<->  ( ( J  C_  ~P A  /\  (/)  e.  J  /\  A  e.  J
)  /\  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
133, 5, 123bitr2i 265 . 2  |-  ( ( J  e.  Top  /\  ( J  C_  ~P A  /\  ( (/)  e.  J  /\  A  e.  J
) ) )  <->  ( ( J  C_  ~P A  /\  (/) 
e.  J  /\  A  e.  J )  /\  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
141, 2, 133bitri 263 1  |-  ( <. A ,  J >.  e. 
TopSp OLD  <->  ( ( J 
C_  ~P A  /\  (/)  e.  J  /\  A  e.  J
)  /\  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1549    e. wcel 1725   A.wral 2705   _Vcvv 2956    i^i cin 3319    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   <.cop 3817   U.cuni 4015   Topctop 16958   TopSp OLDctpsOLD 16960
This theorem is referenced by:  istps4OLD  16988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-xp 4884  df-rel 4885  df-top 16963  df-topspOLD 16964
  Copyright terms: Public domain W3C validator