MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istps3OLD Unicode version

Theorem istps3OLD 16676
Description: A standard textbook definition of a topological space. (Contributed by NM, 18-Jul-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
istps3OLD  |-  ( <. A ,  J >.  e. 
TopSp OLD  <->  ( ( J 
C_  ~P A  /\  (/)  e.  J  /\  A  e.  J
)  /\  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
Distinct variable groups:    x, y, A    x, J, y

Proof of Theorem istps3OLD
StepHypRef Expression
1 istps2OLD 16675 . 2  |-  ( <. A ,  J >.  e. 
TopSp OLD  <->  ( ( J  e.  Top  /\  J  C_ 
~P A )  /\  ( (/)  e.  J  /\  A  e.  J )
) )
2 anass 630 . 2  |-  ( ( ( J  e.  Top  /\  J  C_  ~P A
)  /\  ( (/)  e.  J  /\  A  e.  J
) )  <->  ( J  e.  Top  /\  ( J 
C_  ~P A  /\  ( (/) 
e.  J  /\  A  e.  J ) ) ) )
3 ancom 437 . . 3  |-  ( ( J  e.  Top  /\  ( J  C_  ~P A  /\  ( (/)  e.  J  /\  A  e.  J
) ) )  <->  ( ( J  C_  ~P A  /\  ( (/)  e.  J  /\  A  e.  J )
)  /\  J  e.  Top ) )
4 3anass 938 . . . 4  |-  ( ( J  C_  ~P A  /\  (/)  e.  J  /\  A  e.  J )  <->  ( J  C_  ~P A  /\  ( (/)  e.  J  /\  A  e.  J
) ) )
54anbi1i 676 . . 3  |-  ( ( ( J  C_  ~P A  /\  (/)  e.  J  /\  A  e.  J )  /\  J  e.  Top ) 
<->  ( ( J  C_  ~P A  /\  ( (/) 
e.  J  /\  A  e.  J ) )  /\  J  e.  Top )
)
6 pwexg 4210 . . . . . . 7  |-  ( A  e.  J  ->  ~P A  e.  _V )
7 ssexg 4176 . . . . . . 7  |-  ( ( J  C_  ~P A  /\  ~P A  e.  _V )  ->  J  e.  _V )
86, 7sylan2 460 . . . . . 6  |-  ( ( J  C_  ~P A  /\  A  e.  J
)  ->  J  e.  _V )
983adant2 974 . . . . 5  |-  ( ( J  C_  ~P A  /\  (/)  e.  J  /\  A  e.  J )  ->  J  e.  _V )
10 istopg 16657 . . . . 5  |-  ( J  e.  _V  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
119, 10syl 15 . . . 4  |-  ( ( J  C_  ~P A  /\  (/)  e.  J  /\  A  e.  J )  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
1211pm5.32i 618 . . 3  |-  ( ( ( J  C_  ~P A  /\  (/)  e.  J  /\  A  e.  J )  /\  J  e.  Top ) 
<->  ( ( J  C_  ~P A  /\  (/)  e.  J  /\  A  e.  J
)  /\  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
133, 5, 123bitr2i 264 . 2  |-  ( ( J  e.  Top  /\  ( J  C_  ~P A  /\  ( (/)  e.  J  /\  A  e.  J
) ) )  <->  ( ( J  C_  ~P A  /\  (/) 
e.  J  /\  A  e.  J )  /\  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
141, 2, 133bitri 262 1  |-  ( <. A ,  J >.  e. 
TopSp OLD  <->  ( ( J 
C_  ~P A  /\  (/)  e.  J  /\  A  e.  J
)  /\  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1530    e. wcel 1696   A.wral 2556   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   <.cop 3656   U.cuni 3843   Topctop 16647   TopSp OLDctpsOLD 16649
This theorem is referenced by:  istps4OLD  16677
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-top 16652  df-topspOLD 16653
  Copyright terms: Public domain W3C validator