MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrg Unicode version

Theorem istrg 18114
Description: Express the predicate " R is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
istrg.1  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
istrg  |-  ( R  e.  TopRing 
<->  ( R  e.  TopGrp  /\  R  e.  Ring  /\  M  e. TopMnd ) )

Proof of Theorem istrg
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 elin 3473 . . 3  |-  ( R  e.  ( TopGrp  i^i  Ring ) 
<->  ( R  e.  TopGrp  /\  R  e.  Ring )
)
21anbi1i 677 . 2  |-  ( ( R  e.  ( TopGrp  i^i 
Ring )  /\  M  e. TopMnd )  <->  ( ( R  e.  TopGrp  /\  R  e.  Ring )  /\  M  e. TopMnd
) )
3 fveq2 5668 . . . . 5  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
4 istrg.1 . . . . 5  |-  M  =  (mulGrp `  R )
53, 4syl6eqr 2437 . . . 4  |-  ( r  =  R  ->  (mulGrp `  r )  =  M )
65eleq1d 2453 . . 3  |-  ( r  =  R  ->  (
(mulGrp `  r )  e. TopMnd  <-> 
M  e. TopMnd ) )
7 df-trg 18110 . . 3  |-  TopRing  =  {
r  e.  ( TopGrp  i^i 
Ring )  |  (mulGrp `  r )  e. TopMnd }
86, 7elrab2 3037 . 2  |-  ( R  e.  TopRing 
<->  ( R  e.  (
TopGrp  i^i  Ring )  /\  M  e. TopMnd ) )
9 df-3an 938 . 2  |-  ( ( R  e.  TopGrp  /\  R  e.  Ring  /\  M  e. TopMnd )  <-> 
( ( R  e. 
TopGrp  /\  R  e.  Ring )  /\  M  e. TopMnd )
)
102, 8, 93bitr4i 269 1  |-  ( R  e.  TopRing 
<->  ( R  e.  TopGrp  /\  R  e.  Ring  /\  M  e. TopMnd ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    i^i cin 3262   ` cfv 5394  mulGrpcmgp 15575   Ringcrg 15587  TopMndctmd 18021   TopGrpctgp 18022   TopRingctrg 18106
This theorem is referenced by:  trgtmd  18115  trgtgp  18118  trgrng  18121  nrgtrg  18596
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-iota 5358  df-fv 5402  df-trg 18110
  Copyright terms: Public domain W3C validator