MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istsr Structured version   Unicode version

Theorem istsr 14649
Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
istsr.1  |-  X  =  dom  R
Assertion
Ref Expression
istsr  |-  ( R  e.  TosetRel 
<->  ( R  e.  PosetRel  /\  ( X  X.  X
)  C_  ( R  u.  `' R ) ) )

Proof of Theorem istsr
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 dmeq 5070 . . . . 5  |-  ( r  =  R  ->  dom  r  =  dom  R )
2 istsr.1 . . . . 5  |-  X  =  dom  R
31, 2syl6eqr 2486 . . . 4  |-  ( r  =  R  ->  dom  r  =  X )
43, 3xpeq12d 4903 . . 3  |-  ( r  =  R  ->  ( dom  r  X.  dom  r
)  =  ( X  X.  X ) )
5 id 20 . . . 4  |-  ( r  =  R  ->  r  =  R )
6 cnveq 5046 . . . 4  |-  ( r  =  R  ->  `' r  =  `' R
)
75, 6uneq12d 3502 . . 3  |-  ( r  =  R  ->  (
r  u.  `' r )  =  ( R  u.  `' R ) )
84, 7sseq12d 3377 . 2  |-  ( r  =  R  ->  (
( dom  r  X.  dom  r )  C_  (
r  u.  `' r )  <->  ( X  X.  X )  C_  ( R  u.  `' R
) ) )
9 df-tsr 14630 . 2  |-  TosetRel  =  {
r  e.  PosetRel  |  ( dom  r  X.  dom  r )  C_  (
r  u.  `' r ) }
108, 9elrab2 3094 1  |-  ( R  e.  TosetRel 
<->  ( R  e.  PosetRel  /\  ( X  X.  X
)  C_  ( R  u.  `' R ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    u. cun 3318    C_ wss 3320    X. cxp 4876   `'ccnv 4877   dom cdm 4878   PosetRelcps 14624    TosetRel ctsr 14625
This theorem is referenced by:  istsr2  14650  tsrlemax  14652  tsrps  14653  cnvtsr  14654  letsr  14672  tsrdir  14683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884  df-cnv 4886  df-dm 4888  df-tsr 14630
  Copyright terms: Public domain W3C validator