Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  istsr2 Structured version   Unicode version

Theorem istsr2 14642
 Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
istsr.1
Assertion
Ref Expression
istsr2
Distinct variable groups:   ,,   ,,

Proof of Theorem istsr2
StepHypRef Expression
1 istsr.1 . . 3
21istsr 14641 . 2
3 qfto 5247 . . 3
43anbi2i 676 . 2
52, 4bitri 241 1
 Colors of variables: wff set class Syntax hints:   wb 177   wo 358   wa 359   wceq 1652   wcel 1725  wral 2697   cun 3310   wss 3312   class class class wbr 4204   cxp 4868  ccnv 4869   cdm 4870  cps 14616   ctsr 14617 This theorem is referenced by:  tsrlin  14643  tsrss  14647 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-cnv 4878  df-dm 4880  df-tsr 14622
 Copyright terms: Public domain W3C validator