MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumcl Structured version   Unicode version

Theorem isumcl 12538
Description: The sum of a converging infinite series is a complex number. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumcl.1  |-  Z  =  ( ZZ>= `  M )
isumcl.2  |-  ( ph  ->  M  e.  ZZ )
isumcl.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumcl.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isumcl.5  |-  ( ph  ->  seq  M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumcl  |-  ( ph  -> 
sum_ k  e.  Z  A  e.  CC )
Distinct variable groups:    k, F    ph, k    k, Z    k, M
Allowed substitution hint:    A( k)

Proof of Theorem isumcl
StepHypRef Expression
1 isumcl.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 isumcl.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 isumcl.3 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
4 isumcl.4 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
51, 2, 3, 4isum 12506 . 2  |-  ( ph  -> 
sum_ k  e.  Z  A  =  (  ~~>  `  seq  M (  +  ,  F
) ) )
6 fclim 12340 . . 3  |-  ~~>  : dom  ~~>  --> CC
7 isumcl.5 . . 3  |-  ( ph  ->  seq  M (  +  ,  F )  e. 
dom 
~~>  )
8 ffvelrn 5861 . . 3  |-  ( (  ~~>  : dom  ~~>  --> CC  /\  seq  M (  +  ,  F )  e.  dom  ~~>  )  ->  (  ~~>  `  seq  M (  +  ,  F
) )  e.  CC )
96, 7, 8sylancr 645 . 2  |-  ( ph  ->  (  ~~>  `  seq  M (  +  ,  F ) )  e.  CC )
105, 9eqeltrd 2510 1  |-  ( ph  -> 
sum_ k  e.  Z  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   dom cdm 4871   -->wf 5443   ` cfv 5447   CCcc 8981    + caddc 8986   ZZcz 10275   ZZ>=cuz 10481    seq cseq 11316    ~~> cli 12271   sum_csu 12472
This theorem is referenced by:  isummulc1  12540  isumdivc  12541  geolim2  12641  mertenslem1  12654  mertenslem2  12655  mertens  12656  eff  12677  eftlcl  12701  pserulm  20331  abelthlem4  20343  abelthlem6  20345  abelthlem7  20347  abelthlem9  20349  subfaclim  24867  iprodefisum  25311  iprodgam  25312
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-inf2 7589  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-oadd 6721  df-er 6898  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-sup 7439  df-oi 7472  df-card 7819  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-3 10052  df-n0 10215  df-z 10276  df-uz 10482  df-rp 10606  df-fz 11037  df-fzo 11129  df-seq 11317  df-exp 11376  df-hash 11612  df-cj 11897  df-re 11898  df-im 11899  df-sqr 12033  df-abs 12034  df-clim 12275  df-sum 12473
  Copyright terms: Public domain W3C validator