MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumdivc Structured version   Unicode version

Theorem isumdivc 12540
Description: An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumcl.1  |-  Z  =  ( ZZ>= `  M )
isumcl.2  |-  ( ph  ->  M  e.  ZZ )
isumcl.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumcl.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isumcl.5  |-  ( ph  ->  seq  M (  +  ,  F )  e. 
dom 
~~>  )
summulc.6  |-  ( ph  ->  B  e.  CC )
isumdivc.7  |-  ( ph  ->  B  =/=  0 )
Assertion
Ref Expression
isumdivc  |-  ( ph  ->  ( sum_ k  e.  Z  A  /  B )  = 
sum_ k  e.  Z  ( A  /  B
) )
Distinct variable groups:    B, k    k, F    ph, k    k, Z   
k, M
Allowed substitution hint:    A( k)

Proof of Theorem isumdivc
StepHypRef Expression
1 isumcl.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 isumcl.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 isumcl.3 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
4 isumcl.4 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
5 isumcl.5 . . 3  |-  ( ph  ->  seq  M (  +  ,  F )  e. 
dom 
~~>  )
6 summulc.6 . . . 4  |-  ( ph  ->  B  e.  CC )
7 isumdivc.7 . . . 4  |-  ( ph  ->  B  =/=  0 )
86, 7reccld 9775 . . 3  |-  ( ph  ->  ( 1  /  B
)  e.  CC )
91, 2, 3, 4, 5, 8isummulc1 12539 . 2  |-  ( ph  ->  ( sum_ k  e.  Z  A  x.  ( 1  /  B ) )  =  sum_ k  e.  Z  ( A  x.  (
1  /  B ) ) )
101, 2, 3, 4, 5isumcl 12537 . . 3  |-  ( ph  -> 
sum_ k  e.  Z  A  e.  CC )
1110, 6, 7divrecd 9785 . 2  |-  ( ph  ->  ( sum_ k  e.  Z  A  /  B )  =  ( sum_ k  e.  Z  A  x.  ( 1  /  B ) ) )
126adantr 452 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
137adantr 452 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  B  =/=  0 )
144, 12, 13divrecd 9785 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )
1514sumeq2dv 12489 . 2  |-  ( ph  -> 
sum_ k  e.  Z  ( A  /  B
)  =  sum_ k  e.  Z  ( A  x.  ( 1  /  B
) ) )
169, 11, 153eqtr4d 2477 1  |-  ( ph  ->  ( sum_ k  e.  Z  A  /  B )  = 
sum_ k  e.  Z  ( A  /  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   dom cdm 4870   ` cfv 5446  (class class class)co 6073   CCcc 8980   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    / cdiv 9669   ZZcz 10274   ZZ>=cuz 10480    seq cseq 11315    ~~> cli 12270   sum_csu 12471
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472
  Copyright terms: Public domain W3C validator