Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isumgra Unicode version

Theorem isumgra 23882
Description: The property of being an undirected multigraph. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
isumgra  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( V UMGrph  E  <->  E : dom  E --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
Distinct variable groups:    x, E    x, V    x, W
Allowed substitution hint:    X( x)

Proof of Theorem isumgra
Dummy variables  v 
e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 447 . . . 4  |-  ( ( v  =  V  /\  e  =  E )  ->  e  =  E )
21dmeqd 4897 . . . 4  |-  ( ( v  =  V  /\  e  =  E )  ->  dom  e  =  dom  E )
31, 2feq12d 5397 . . 3  |-  ( ( v  =  V  /\  e  =  E )  ->  ( e : dom  e
--> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 }  <->  E : dom  E --> { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
4 simpl 443 . . . . . 6  |-  ( ( v  =  V  /\  e  =  E )  ->  v  =  V )
54pweqd 3643 . . . . 5  |-  ( ( v  =  V  /\  e  =  E )  ->  ~P v  =  ~P V )
65difeq1d 3306 . . . 4  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ~P v  \  { (/) } )  =  ( ~P V  \  { (/) } ) )
7 rabeq 2795 . . . 4  |-  ( ( ~P v  \  { (/)
} )  =  ( ~P V  \  { (/)
} )  ->  { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x
)  <_  2 }  =  { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } )
8 feq3 5393 . . . 4  |-  ( { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x )  <_  2 }  =  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  ->  ( E : dom  E --> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 }  <->  E : dom  E --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
96, 7, 83syl 18 . . 3  |-  ( ( v  =  V  /\  e  =  E )  ->  ( E : dom  E --> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 }  <->  E : dom  E --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
103, 9bitrd 244 . 2  |-  ( ( v  =  V  /\  e  =  E )  ->  ( e : dom  e
--> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 }  <->  E : dom  E --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
11 df-umgra 23878 . 2  |- UMGrph  =  { <. v ,  e >.  |  e : dom  e
--> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 } }
1210, 11brabga 4295 1  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( V UMGrph  E  <->  E : dom  E --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   {crab 2560    \ cdif 3162   (/)c0 3468   ~Pcpw 3638   {csn 3653   class class class wbr 4039   dom cdm 4705   -->wf 5267   ` cfv 5271    <_ cle 8884   2c2 9811   #chash 11353   UMGrph cumg 23875
This theorem is referenced by:  wrdumgra  23883  umgraf2  23884  umgrares  23891  umgra0  23892  umgra1  23893  umgraun  23894  uslisumgra  28246  uslgraun  28254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-fun 5273  df-fn 5274  df-f 5275  df-umgra 23878
  Copyright terms: Public domain W3C validator