MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumltss Unicode version

Theorem isumltss 12307
Description: A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Mar-2015.)
Hypotheses
Ref Expression
isumltss.1  |-  Z  =  ( ZZ>= `  M )
isumltss.2  |-  ( ph  ->  M  e.  ZZ )
isumltss.3  |-  ( ph  ->  A  e.  Fin )
isumltss.4  |-  ( ph  ->  A  C_  Z )
isumltss.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
isumltss.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR+ )
isumltss.7  |-  ( ph  ->  seq  M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumltss  |-  ( ph  -> 
sum_ k  e.  A  B  <  sum_ k  e.  Z  B )
Distinct variable groups:    A, k    k, F    k, M    ph, k    k, Z
Allowed substitution hint:    B( k)

Proof of Theorem isumltss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isumltss.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2 isumltss.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
32uzinf 11028 . . . . 5  |-  ( M  e.  ZZ  ->  -.  Z  e.  Fin )
41, 3syl 15 . . . 4  |-  ( ph  ->  -.  Z  e.  Fin )
5 ssdif0 3513 . . . . 5  |-  ( Z 
C_  A  <->  ( Z  \  A )  =  (/) )
6 isumltss.4 . . . . . 6  |-  ( ph  ->  A  C_  Z )
7 eqss 3194 . . . . . . 7  |-  ( A  =  Z  <->  ( A  C_  Z  /\  Z  C_  A ) )
8 isumltss.3 . . . . . . . 8  |-  ( ph  ->  A  e.  Fin )
9 eleq1 2343 . . . . . . . 8  |-  ( A  =  Z  ->  ( A  e.  Fin  <->  Z  e.  Fin ) )
108, 9syl5ibcom 211 . . . . . . 7  |-  ( ph  ->  ( A  =  Z  ->  Z  e.  Fin ) )
117, 10syl5bir 209 . . . . . 6  |-  ( ph  ->  ( ( A  C_  Z  /\  Z  C_  A
)  ->  Z  e.  Fin ) )
126, 11mpand 656 . . . . 5  |-  ( ph  ->  ( Z  C_  A  ->  Z  e.  Fin )
)
135, 12syl5bir 209 . . . 4  |-  ( ph  ->  ( ( Z  \  A )  =  (/)  ->  Z  e.  Fin )
)
144, 13mtod 168 . . 3  |-  ( ph  ->  -.  ( Z  \  A )  =  (/) )
15 neq0 3465 . . 3  |-  ( -.  ( Z  \  A
)  =  (/)  <->  E. x  x  e.  ( Z  \  A ) )
1614, 15sylib 188 . 2  |-  ( ph  ->  E. x  x  e.  ( Z  \  A
) )
178adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  A  e.  Fin )
186adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  A  C_  Z
)
1918sselda 3180 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  A )  ->  k  e.  Z )
20 isumltss.6 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR+ )
2120adantlr 695 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  Z )  ->  B  e.  RR+ )
2221rpred 10390 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  Z )  ->  B  e.  RR )
2319, 22syldan 456 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  A )  ->  B  e.  RR )
2417, 23fsumrecl 12207 . . . . 5  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  A  B  e.  RR )
25 snfi 6941 . . . . . . 7  |-  { x }  e.  Fin
26 unfi 7124 . . . . . . 7  |-  ( ( A  e.  Fin  /\  { x }  e.  Fin )  ->  ( A  u.  { x } )  e. 
Fin )
2717, 25, 26sylancl 643 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  ( A  u.  { x } )  e.  Fin )
28 eldifi 3298 . . . . . . . . . . 11  |-  ( x  e.  ( Z  \  A )  ->  x  e.  Z )
2928snssd 3760 . . . . . . . . . 10  |-  ( x  e.  ( Z  \  A )  ->  { x }  C_  Z )
306, 29anim12i 549 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  ( A  C_  Z  /\  { x }  C_  Z ) )
31 unss 3349 . . . . . . . . 9  |-  ( ( A  C_  Z  /\  { x }  C_  Z
)  <->  ( A  u.  { x } )  C_  Z )
3230, 31sylib 188 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  ( A  u.  { x } ) 
C_  Z )
3332sselda 3180 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  ( A  u.  {
x } ) )  ->  k  e.  Z
)
3433, 22syldan 456 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  ( A  u.  {
x } ) )  ->  B  e.  RR )
3527, 34fsumrecl 12207 . . . . 5  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  ( A  u.  {
x } ) B  e.  RR )
361adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  M  e.  ZZ )
37 isumltss.5 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
3837adantlr 695 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  Z )  ->  ( F `  k )  =  B )
39 isumltss.7 . . . . . . 7  |-  ( ph  ->  seq  M (  +  ,  F )  e. 
dom 
~~>  )
4039adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  seq  M (  +  ,  F )  e.  dom  ~~>  )
412, 36, 38, 22, 40isumrecl 12228 . . . . 5  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  Z  B  e.  RR )
4225a1i 10 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  { x }  e.  Fin )
43 vex 2791 . . . . . . . . . 10  |-  x  e. 
_V
4443snnz 3744 . . . . . . . . 9  |-  { x }  =/=  (/)
4544a1i 10 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  { x }  =/=  (/) )
4629adantl 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  { x }  C_  Z )
4746sselda 3180 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  { x } )  ->  k  e.  Z
)
4847, 21syldan 456 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  { x } )  ->  B  e.  RR+ )
4942, 45, 48fsumrpcl 12210 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e. 
{ x } B  e.  RR+ )
5024, 49ltaddrpd 10419 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  A  B  <  ( sum_ k  e.  A  B  +  sum_ k  e.  {
x } B ) )
51 eldifn 3299 . . . . . . . . 9  |-  ( x  e.  ( Z  \  A )  ->  -.  x  e.  A )
5251adantl 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  -.  x  e.  A )
53 disjsn 3693 . . . . . . . 8  |-  ( ( A  i^i  { x } )  =  (/)  <->  -.  x  e.  A )
5452, 53sylibr 203 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  ( A  i^i  { x } )  =  (/) )
55 eqidd 2284 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  ( A  u.  { x } )  =  ( A  u.  { x } ) )
5621rpcnd 10392 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  Z )  ->  B  e.  CC )
5733, 56syldan 456 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  ( A  u.  {
x } ) )  ->  B  e.  CC )
5854, 55, 27, 57fsumsplit 12212 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  ( A  u.  {
x } ) B  =  ( sum_ k  e.  A  B  +  sum_ k  e.  { x } B ) )
5950, 58breqtrrd 4049 . . . . 5  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  A  B  <  sum_ k  e.  ( A  u.  { x } ) B )
6021rpge0d 10394 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  Z )  ->  0  <_  B )
612, 36, 27, 32, 38, 22, 60, 40isumless 12304 . . . . 5  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  ( A  u.  {
x } ) B  <_  sum_ k  e.  Z  B )
6224, 35, 41, 59, 61ltletrd 8976 . . . 4  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  A  B  <  sum_ k  e.  Z  B
)
6362ex 423 . . 3  |-  ( ph  ->  ( x  e.  ( Z  \  A )  ->  sum_ k  e.  A  B  <  sum_ k  e.  Z  B ) )
6463exlimdv 1664 . 2  |-  ( ph  ->  ( E. x  x  e.  ( Z  \  A )  ->  sum_ k  e.  A  B  <  sum_ k  e.  Z  B
) )
6516, 64mpd 14 1  |-  ( ph  -> 
sum_ k  e.  A  B  <  sum_ k  e.  Z  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   class class class wbr 4023   dom cdm 4689   ` cfv 5255  (class class class)co 5858   Fincfn 6863   CCcc 8735   RRcr 8736    + caddc 8740    < clt 8867   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354    seq cseq 11046    ~~> cli 11958   sum_csu 12158
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159
  Copyright terms: Public domain W3C validator