MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isummulc2 Unicode version

Theorem isummulc2 12225
Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumcl.1  |-  Z  =  ( ZZ>= `  M )
isumcl.2  |-  ( ph  ->  M  e.  ZZ )
isumcl.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumcl.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isumcl.5  |-  ( ph  ->  seq  M (  +  ,  F )  e. 
dom 
~~>  )
summulc.6  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
isummulc2  |-  ( ph  ->  ( B  x.  sum_ k  e.  Z  A
)  =  sum_ k  e.  Z  ( B  x.  A ) )
Distinct variable groups:    B, k    k, F    ph, k    k, Z   
k, M
Allowed substitution hint:    A( k)

Proof of Theorem isummulc2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 sumfc 12182 . 2  |-  sum_ m  e.  Z  ( (
k  e.  Z  |->  ( B  x.  A ) ) `  m )  =  sum_ k  e.  Z  ( B  x.  A
)
2 isumcl.1 . . 3  |-  Z  =  ( ZZ>= `  M )
3 isumcl.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
4 eqidd 2284 . . 3  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  m
)  =  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  m ) )
5 summulc.6 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
65adantr 451 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
7 isumcl.4 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
86, 7mulcld 8855 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( B  x.  A )  e.  CC )
9 eqid 2283 . . . . 5  |-  ( k  e.  Z  |->  ( B  x.  A ) )  =  ( k  e.  Z  |->  ( B  x.  A ) )
108, 9fmptd 5684 . . . 4  |-  ( ph  ->  ( k  e.  Z  |->  ( B  x.  A
) ) : Z --> CC )
11 ffvelrn 5663 . . . 4  |-  ( ( ( k  e.  Z  |->  ( B  x.  A
) ) : Z --> CC  /\  m  e.  Z
)  ->  ( (
k  e.  Z  |->  ( B  x.  A ) ) `  m )  e.  CC )
1210, 11sylan 457 . . 3  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  m
)  e.  CC )
13 isumcl.3 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
14 isumcl.5 . . . . 5  |-  ( ph  ->  seq  M (  +  ,  F )  e. 
dom 
~~>  )
152, 3, 13, 7, 14isumclim2 12221 . . . 4  |-  ( ph  ->  seq  M (  +  ,  F )  ~~>  sum_ k  e.  Z  A )
1613, 7eqeltrd 2357 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1716ralrimiva 2626 . . . . 5  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  CC )
18 fveq2 5525 . . . . . . 7  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
1918eleq1d 2349 . . . . . 6  |-  ( k  =  m  ->  (
( F `  k
)  e.  CC  <->  ( F `  m )  e.  CC ) )
2019rspccva 2883 . . . . 5  |-  ( ( A. k  e.  Z  ( F `  k )  e.  CC  /\  m  e.  Z )  ->  ( F `  m )  e.  CC )
2117, 20sylan 457 . . . 4  |-  ( (
ph  /\  m  e.  Z )  ->  ( F `  m )  e.  CC )
22 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
23 ovex 5883 . . . . . . . 8  |-  ( B  x.  A )  e. 
_V
249fvmpt2 5608 . . . . . . . 8  |-  ( ( k  e.  Z  /\  ( B  x.  A
)  e.  _V )  ->  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  k )  =  ( B  x.  A ) )
2522, 23, 24sylancl 643 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  k
)  =  ( B  x.  A ) )
2613oveq2d 5874 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( B  x.  ( F `  k ) )  =  ( B  x.  A
) )
2725, 26eqtr4d 2318 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  k
)  =  ( B  x.  ( F `  k ) ) )
2827ralrimiva 2626 . . . . 5  |-  ( ph  ->  A. k  e.  Z  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  k )  =  ( B  x.  ( F `
 k ) ) )
29 nfmpt1 4109 . . . . . . . 8  |-  F/_ k
( k  e.  Z  |->  ( B  x.  A
) )
30 nfcv 2419 . . . . . . . 8  |-  F/_ k
m
3129, 30nffv 5532 . . . . . . 7  |-  F/_ k
( ( k  e.  Z  |->  ( B  x.  A ) ) `  m )
3231nfeq1 2428 . . . . . 6  |-  F/ k ( ( k  e.  Z  |->  ( B  x.  A ) ) `  m )  =  ( B  x.  ( F `
 m ) )
33 fveq2 5525 . . . . . . 7  |-  ( k  =  m  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  k
)  =  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  m ) )
3418oveq2d 5874 . . . . . . 7  |-  ( k  =  m  ->  ( B  x.  ( F `  k ) )  =  ( B  x.  ( F `  m )
) )
3533, 34eqeq12d 2297 . . . . . 6  |-  ( k  =  m  ->  (
( ( k  e.  Z  |->  ( B  x.  A ) ) `  k )  =  ( B  x.  ( F `
 k ) )  <-> 
( ( k  e.  Z  |->  ( B  x.  A ) ) `  m )  =  ( B  x.  ( F `
 m ) ) ) )
3632, 35rspc 2878 . . . . 5  |-  ( m  e.  Z  ->  ( A. k  e.  Z  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  k )  =  ( B  x.  ( F `
 k ) )  ->  ( ( k  e.  Z  |->  ( B  x.  A ) ) `
 m )  =  ( B  x.  ( F `  m )
) ) )
3728, 36mpan9 455 . . . 4  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  m
)  =  ( B  x.  ( F `  m ) ) )
382, 3, 5, 15, 21, 37isermulc2 12131 . . 3  |-  ( ph  ->  seq  M (  +  ,  ( k  e.  Z  |->  ( B  x.  A ) ) )  ~~>  ( B  x.  sum_ k  e.  Z  A
) )
392, 3, 4, 12, 38isumclim 12220 . 2  |-  ( ph  -> 
sum_ m  e.  Z  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  m )  =  ( B  x.  sum_ k  e.  Z  A )
)
401, 39syl5reqr 2330 1  |-  ( ph  ->  ( B  x.  sum_ k  e.  Z  A
)  =  sum_ k  e.  Z  ( B  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    e. cmpt 4077   dom cdm 4689   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735    + caddc 8740    x. cmul 8742   ZZcz 10024   ZZ>=cuz 10230    seq cseq 11046    ~~> cli 11958   sum_csu 12158
This theorem is referenced by:  isummulc1  12226  trirecip  12321  geoisum1c  12336  isumneg  27728
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159
  Copyright terms: Public domain W3C validator