Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isunscov Unicode version

Theorem isunscov 25177
Description: If an infinite set  A is included in the underlying set of a finite cover  B, then there exists a set of the cover that contains an infinite number of element of  A. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
isunscov  |-  ( ( -.  A  e.  Fin  /\  B  e.  Fin  /\  A  C_  U. B )  ->  E. x  e.  B  -.  ( A  i^i  x
)  e.  Fin )
Distinct variable groups:    x, A    x, B

Proof of Theorem isunscov
StepHypRef Expression
1 dfral2 2568 . . 3  |-  ( A. x  e.  B  ( A  i^i  x )  e. 
Fin 
<->  -.  E. x  e.  B  -.  ( A  i^i  x )  e. 
Fin )
2 iunfi 7160 . . . . . . . 8  |-  ( ( B  e.  Fin  /\  A. x  e.  B  ( A  i^i  x )  e.  Fin )  ->  U_ x  e.  B  ( A  i^i  x
)  e.  Fin )
3 iunin2 3982 . . . . . . . . . 10  |-  U_ x  e.  B  ( A  i^i  x )  =  ( A  i^i  U_ x  e.  B  x )
43eleq1i 2359 . . . . . . . . 9  |-  ( U_ x  e.  B  ( A  i^i  x )  e. 
Fin 
<->  ( A  i^i  U_ x  e.  B  x
)  e.  Fin )
5 uniiun 3971 . . . . . . . . . . . . 13  |-  U. B  =  U_ x  e.  B  x
65eqcomi 2300 . . . . . . . . . . . 12  |-  U_ x  e.  B  x  =  U. B
76ineq2i 3380 . . . . . . . . . . 11  |-  ( A  i^i  U_ x  e.  B  x )  =  ( A  i^i  U. B
)
87eleq1i 2359 . . . . . . . . . 10  |-  ( ( A  i^i  U_ x  e.  B  x )  e.  Fin  <->  ( A  i^i  U. B )  e.  Fin )
9 df-ss 3179 . . . . . . . . . . . 12  |-  ( A 
C_  U. B  <->  ( A  i^i  U. B )  =  A )
10 eleq1 2356 . . . . . . . . . . . . 13  |-  ( ( A  i^i  U. B
)  =  A  -> 
( ( A  i^i  U. B )  e.  Fin  <->  A  e.  Fin ) )
11 pm2.24 101 . . . . . . . . . . . . 13  |-  ( A  e.  Fin  ->  ( -.  A  e.  Fin  ->  E. x  e.  B  -.  ( A  i^i  x
)  e.  Fin )
)
1210, 11syl6bi 219 . . . . . . . . . . . 12  |-  ( ( A  i^i  U. B
)  =  A  -> 
( ( A  i^i  U. B )  e.  Fin  ->  ( -.  A  e. 
Fin  ->  E. x  e.  B  -.  ( A  i^i  x
)  e.  Fin )
) )
139, 12sylbi 187 . . . . . . . . . . 11  |-  ( A 
C_  U. B  ->  (
( A  i^i  U. B )  e.  Fin  ->  ( -.  A  e. 
Fin  ->  E. x  e.  B  -.  ( A  i^i  x
)  e.  Fin )
) )
1413com12 27 . . . . . . . . . 10  |-  ( ( A  i^i  U. B
)  e.  Fin  ->  ( A  C_  U. B  -> 
( -.  A  e. 
Fin  ->  E. x  e.  B  -.  ( A  i^i  x
)  e.  Fin )
) )
158, 14sylbi 187 . . . . . . . . 9  |-  ( ( A  i^i  U_ x  e.  B  x )  e.  Fin  ->  ( A  C_ 
U. B  ->  ( -.  A  e.  Fin  ->  E. x  e.  B  -.  ( A  i^i  x
)  e.  Fin )
) )
164, 15sylbi 187 . . . . . . . 8  |-  ( U_ x  e.  B  ( A  i^i  x )  e. 
Fin  ->  ( A  C_  U. B  ->  ( -.  A  e.  Fin  ->  E. x  e.  B  -.  ( A  i^i  x )  e. 
Fin ) ) )
172, 16syl 15 . . . . . . 7  |-  ( ( B  e.  Fin  /\  A. x  e.  B  ( A  i^i  x )  e.  Fin )  -> 
( A  C_  U. B  ->  ( -.  A  e. 
Fin  ->  E. x  e.  B  -.  ( A  i^i  x
)  e.  Fin )
) )
1817ex 423 . . . . . 6  |-  ( B  e.  Fin  ->  ( A. x  e.  B  ( A  i^i  x
)  e.  Fin  ->  ( A  C_  U. B  -> 
( -.  A  e. 
Fin  ->  E. x  e.  B  -.  ( A  i^i  x
)  e.  Fin )
) ) )
1918com24 81 . . . . 5  |-  ( B  e.  Fin  ->  ( -.  A  e.  Fin  ->  ( A  C_  U. B  ->  ( A. x  e.  B  ( A  i^i  x )  e.  Fin  ->  E. x  e.  B  -.  ( A  i^i  x
)  e.  Fin )
) ) )
2019com12 27 . . . 4  |-  ( -.  A  e.  Fin  ->  ( B  e.  Fin  ->  ( A  C_  U. B  -> 
( A. x  e.  B  ( A  i^i  x )  e.  Fin  ->  E. x  e.  B  -.  ( A  i^i  x
)  e.  Fin )
) ) )
21203imp 1145 . . 3  |-  ( ( -.  A  e.  Fin  /\  B  e.  Fin  /\  A  C_  U. B )  ->  ( A. x  e.  B  ( A  i^i  x )  e.  Fin  ->  E. x  e.  B  -.  ( A  i^i  x
)  e.  Fin )
)
221, 21syl5bir 209 . 2  |-  ( ( -.  A  e.  Fin  /\  B  e.  Fin  /\  A  C_  U. B )  ->  ( -.  E. x  e.  B  -.  ( A  i^i  x
)  e.  Fin  ->  E. x  e.  B  -.  ( A  i^i  x
)  e.  Fin )
)
2322pm2.18d 103 1  |-  ( ( -.  A  e.  Fin  /\  B  e.  Fin  /\  A  C_  U. B )  ->  E. x  e.  B  -.  ( A  i^i  x
)  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    i^i cin 3164    C_ wss 3165   U.cuni 3843   U_ciun 3921   Fincfn 6879
This theorem is referenced by:  bwt2  25695
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-fin 6883
  Copyright terms: Public domain W3C validator