MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isvci Unicode version

Theorem isvci 21138
Description: Properties that determine a complex vector space. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
isvci.1  |-  G  e. 
AbelOp
isvci.2  |-  dom  G  =  ( X  X.  X )
isvci.3  |-  S :
( CC  X.  X
) --> X
isvci.4  |-  ( x  e.  X  ->  (
1 S x )  =  x )
isvci.5  |-  ( ( y  e.  CC  /\  x  e.  X  /\  z  e.  X )  ->  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
isvci.6  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) ) )
isvci.7  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  x.  z
) S x )  =  ( y S ( z S x ) ) )
isvci.8  |-  W  = 
<. G ,  S >.
Assertion
Ref Expression
isvci  |-  W  e. 
CVec OLD
Distinct variable groups:    x, y,
z, G    x, S, y, z    x, X, y, z
Allowed substitution hints:    W( x, y, z)

Proof of Theorem isvci
StepHypRef Expression
1 isvci.8 . 2  |-  W  = 
<. G ,  S >.
2 isvci.1 . . 3  |-  G  e. 
AbelOp
3 isvci.3 . . 3  |-  S :
( CC  X.  X
) --> X
4 isvci.4 . . . . 5  |-  ( x  e.  X  ->  (
1 S x )  =  x )
5 isvci.5 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  x  e.  X  /\  z  e.  X )  ->  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
653com12 1155 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  CC  /\  z  e.  X )  ->  (
y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
763expa 1151 . . . . . . . 8  |-  ( ( ( x  e.  X  /\  y  e.  CC )  /\  z  e.  X
)  ->  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
87ralrimiva 2626 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
9 isvci.6 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) ) )
10 isvci.7 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  x.  z
) S x )  =  ( y S ( z S x ) ) )
119, 10jca 518 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
12113comr 1159 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
13123expa 1151 . . . . . . . 8  |-  ( ( ( x  e.  X  /\  y  e.  CC )  /\  z  e.  CC )  ->  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
1413ralrimiva 2626 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
158, 14jca 518 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
1615ralrimiva 2626 . . . . 5  |-  ( x  e.  X  ->  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
174, 16jca 518 . . . 4  |-  ( x  e.  X  ->  (
( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) )
1817rgen 2608 . . 3  |-  A. x  e.  X  ( (
1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
19 ablogrpo 20951 . . . . . 6  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
202, 19ax-mp 8 . . . . 5  |-  G  e. 
GrpOp
21 isvci.2 . . . . 5  |-  dom  G  =  ( X  X.  X )
2220, 21grporn 20879 . . . 4  |-  X  =  ran  G
2322isvc 21137 . . 3  |-  ( <. G ,  S >.  e. 
CVec OLD  <->  ( G  e. 
AbelOp  /\  S : ( CC  X.  X ) --> X  /\  A. x  e.  X  ( (
1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) )
242, 3, 18, 23mpbir3an 1134 . 2  |-  <. G ,  S >.  e.  CVec OLD
251, 24eqeltri 2353 1  |-  W  e. 
CVec OLD
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   <.cop 3643    X. cxp 4687   dom cdm 4689   -->wf 5251  (class class class)co 5858   CCcc 8735   1c1 8738    + caddc 8740    x. cmul 8742   GrpOpcgr 20853   AbelOpcablo 20948   CVec
OLDcvc 21101
This theorem is referenced by:  cncvc  21139  hilvc  21741  hhssnv  21841
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-grpo 20858  df-ablo 20949  df-vc 21102
  Copyright terms: Public domain W3C validator