MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isvci Unicode version

Theorem isvci 21451
Description: Properties that determine a complex vector space. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
isvci.1  |-  G  e. 
AbelOp
isvci.2  |-  dom  G  =  ( X  X.  X )
isvci.3  |-  S :
( CC  X.  X
) --> X
isvci.4  |-  ( x  e.  X  ->  (
1 S x )  =  x )
isvci.5  |-  ( ( y  e.  CC  /\  x  e.  X  /\  z  e.  X )  ->  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
isvci.6  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) ) )
isvci.7  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  x.  z
) S x )  =  ( y S ( z S x ) ) )
isvci.8  |-  W  = 
<. G ,  S >.
Assertion
Ref Expression
isvci  |-  W  e. 
CVec OLD
Distinct variable groups:    x, y,
z, G    x, S, y, z    x, X, y, z
Allowed substitution hints:    W( x, y, z)

Proof of Theorem isvci
StepHypRef Expression
1 isvci.8 . 2  |-  W  = 
<. G ,  S >.
2 isvci.1 . . 3  |-  G  e. 
AbelOp
3 isvci.3 . . 3  |-  S :
( CC  X.  X
) --> X
4 isvci.4 . . . . 5  |-  ( x  e.  X  ->  (
1 S x )  =  x )
5 isvci.5 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  x  e.  X  /\  z  e.  X )  ->  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
653com12 1156 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  CC  /\  z  e.  X )  ->  (
y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
763expa 1152 . . . . . . . 8  |-  ( ( ( x  e.  X  /\  y  e.  CC )  /\  z  e.  X
)  ->  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
87ralrimiva 2711 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
9 isvci.6 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) ) )
10 isvci.7 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  x.  z
) S x )  =  ( y S ( z S x ) ) )
119, 10jca 518 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
12113comr 1160 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
13123expa 1152 . . . . . . . 8  |-  ( ( ( x  e.  X  /\  y  e.  CC )  /\  z  e.  CC )  ->  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
1413ralrimiva 2711 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
158, 14jca 518 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
1615ralrimiva 2711 . . . . 5  |-  ( x  e.  X  ->  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
174, 16jca 518 . . . 4  |-  ( x  e.  X  ->  (
( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) )
1817rgen 2693 . . 3  |-  A. x  e.  X  ( (
1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
19 ablogrpo 21262 . . . . . 6  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
202, 19ax-mp 8 . . . . 5  |-  G  e. 
GrpOp
21 isvci.2 . . . . 5  |-  dom  G  =  ( X  X.  X )
2220, 21grporn 21190 . . . 4  |-  X  =  ran  G
2322isvc 21450 . . 3  |-  ( <. G ,  S >.  e. 
CVec OLD  <->  ( G  e. 
AbelOp  /\  S : ( CC  X.  X ) --> X  /\  A. x  e.  X  ( (
1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) )
242, 3, 18, 23mpbir3an 1135 . 2  |-  <. G ,  S >.  e.  CVec OLD
251, 24eqeltri 2436 1  |-  W  e. 
CVec OLD
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   A.wral 2628   <.cop 3732    X. cxp 4790   dom cdm 4792   -->wf 5354  (class class class)co 5981   CCcc 8882   1c1 8885    + caddc 8887    x. cmul 8889   GrpOpcgr 21164   AbelOpcablo 21259   CVec
OLDcvc 21414
This theorem is referenced by:  cncvc  21452  hilvc  22054  hhssnv  22154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-grpo 21169  df-ablo 21260  df-vc 21415
  Copyright terms: Public domain W3C validator