Mathbox for Frédéric Liné < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isword Unicode version

Theorem isword 26086
 Description: The words over a set . (Contributed by FL, 14-Jan-2014.)
Assertion
Ref Expression
isword

Proof of Theorem isword
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2809 . . 3
21adantr 451 . 2
3 simpr 447 . 2
4 ovex 5899 . . 3
54a1i 10 . 2
6 oveq1 5881 . . 3
7 oveq2 5882 . . . 4
87oveq2d 5890 . . 3
9 df-words 26085 . . 3
106, 8, 9ovmpt2g 5998 . 2
112, 3, 5, 10syl3anc 1182 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358   wceq 1632   wcel 1696  cvv 2801  (class class class)co 5874   cmap 6788  c1 8754  cn0 9981  cfz 10798   cwrd 26084 This theorem is referenced by:  isnword  26089 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-words 26085
 Copyright terms: Public domain W3C validator