MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswun Unicode version

Theorem iswun 8342
Description: Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
iswun  |-  ( U  e.  V  ->  ( U  e. WUni  <->  ( Tr  U  /\  U  =/=  (/)  /\  A. x  e.  U  ( U. x  e.  U  /\  ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U ) ) ) )
Distinct variable group:    x, y, U
Allowed substitution hints:    V( x, y)

Proof of Theorem iswun
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 treq 4135 . . 3  |-  ( u  =  U  ->  ( Tr  u  <->  Tr  U )
)
2 neeq1 2467 . . 3  |-  ( u  =  U  ->  (
u  =/=  (/)  <->  U  =/=  (/) ) )
3 eleq2 2357 . . . . 5  |-  ( u  =  U  ->  ( U. x  e.  u  <->  U. x  e.  U ) )
4 eleq2 2357 . . . . 5  |-  ( u  =  U  ->  ( ~P x  e.  u  <->  ~P x  e.  U ) )
5 eleq2 2357 . . . . . 6  |-  ( u  =  U  ->  ( { x ,  y }  e.  u  <->  { x ,  y }  e.  U ) )
65raleqbi1dv 2757 . . . . 5  |-  ( u  =  U  ->  ( A. y  e.  u  { x ,  y }  e.  u  <->  A. y  e.  U  { x ,  y }  e.  U ) )
73, 4, 63anbi123d 1252 . . . 4  |-  ( u  =  U  ->  (
( U. x  e.  u  /\  ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u )  <->  ( U. x  e.  U  /\  ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U ) ) )
87raleqbi1dv 2757 . . 3  |-  ( u  =  U  ->  ( A. x  e.  u  ( U. x  e.  u  /\  ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u )  <->  A. x  e.  U  ( U. x  e.  U  /\  ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U ) ) )
91, 2, 83anbi123d 1252 . 2  |-  ( u  =  U  ->  (
( Tr  u  /\  u  =/=  (/)  /\  A. x  e.  u  ( U. x  e.  u  /\  ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u ) )  <->  ( Tr  U  /\  U  =/=  (/)  /\  A. x  e.  U  ( U. x  e.  U  /\  ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U ) ) ) )
10 df-wun 8340 . 2  |- WUni  =  {
u  |  ( Tr  u  /\  u  =/=  (/)  /\  A. x  e.  u  ( U. x  e.  u  /\  ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u ) ) }
119, 10elab2g 2929 1  |-  ( U  e.  V  ->  ( U  e. WUni  <->  ( Tr  U  /\  U  =/=  (/)  /\  A. x  e.  U  ( U. x  e.  U  /\  ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   (/)c0 3468   ~Pcpw 3638   {cpr 3654   U.cuni 3843   Tr wtr 4129  WUnicwun 8338
This theorem is referenced by:  wuntr  8343  wununi  8344  wunpw  8345  wunpr  8347  wun0  8356  intwun  8373  r1limwun  8374  wunex2  8376  tskwun  8422  gruwun  8451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-v 2803  df-in 3172  df-ss 3179  df-uni 3844  df-tr 4130  df-wun 8340
  Copyright terms: Public domain W3C validator