MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg11 Unicode version

Theorem itg11 19450
Description: The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
i1f1.1  |-  F  =  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) )
Assertion
Ref Expression
itg11  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( S.1 `  F
)  =  ( vol `  A ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem itg11
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovol0 19256 . . . . 5  |-  ( vol
* `  (/) )  =  0
2 0mbl 19301 . . . . . 6  |-  (/)  e.  dom  vol
3 mblvol 19293 . . . . . 6  |-  ( (/)  e.  dom  vol  ->  ( vol `  (/) )  =  ( vol * `  (/) ) )
42, 3ax-mp 8 . . . . 5  |-  ( vol `  (/) )  =  ( vol * `  (/) )
5 itg10 19447 . . . . 5  |-  ( S.1 `  ( RR  X.  {
0 } ) )  =  0
61, 4, 53eqtr4ri 2418 . . . 4  |-  ( S.1 `  ( RR  X.  {
0 } ) )  =  ( vol `  (/) )
7 noel 3575 . . . . . . . . 9  |-  -.  x  e.  (/)
8 eleq2 2448 . . . . . . . . 9  |-  ( A  =  (/)  ->  ( x  e.  A  <->  x  e.  (/) ) )
97, 8mtbiri 295 . . . . . . . 8  |-  ( A  =  (/)  ->  -.  x  e.  A )
10 iffalse 3689 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  1 ,  0 )  =  0 )
119, 10syl 16 . . . . . . 7  |-  ( A  =  (/)  ->  if ( x  e.  A , 
1 ,  0 )  =  0 )
1211mpteq2dv 4237 . . . . . 6  |-  ( A  =  (/)  ->  ( x  e.  RR  |->  if ( x  e.  A , 
1 ,  0 ) )  =  ( x  e.  RR  |->  0 ) )
13 i1f1.1 . . . . . 6  |-  F  =  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) )
14 fconstmpt 4861 . . . . . 6  |-  ( RR 
X.  { 0 } )  =  ( x  e.  RR  |->  0 )
1512, 13, 143eqtr4g 2444 . . . . 5  |-  ( A  =  (/)  ->  F  =  ( RR  X.  {
0 } ) )
1615fveq2d 5672 . . . 4  |-  ( A  =  (/)  ->  ( S.1 `  F )  =  ( S.1 `  ( RR 
X.  { 0 } ) ) )
17 fveq2 5668 . . . 4  |-  ( A  =  (/)  ->  ( vol `  A )  =  ( vol `  (/) ) )
186, 16, 173eqtr4a 2445 . . 3  |-  ( A  =  (/)  ->  ( S.1 `  F )  =  ( vol `  A ) )
1918a1i 11 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( A  =  (/)  ->  ( S.1 `  F
)  =  ( vol `  A ) ) )
20 n0 3580 . . 3  |-  ( A  =/=  (/)  <->  E. y  y  e.  A )
2113i1f1 19449 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  F  e.  dom  S.1 )
2221adantr 452 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  F  e.  dom  S.1 )
23 itg1val 19442 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ( S.1 `  F )  =  sum_ z  e.  ( ran  F  \  {
0 } ) ( z  x.  ( vol `  ( `' F " { z } ) ) ) )
2422, 23syl 16 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( S.1 `  F )  =  sum_ z  e.  ( ran  F 
\  { 0 } ) ( z  x.  ( vol `  ( `' F " { z } ) ) ) )
2513i1f1lem 19448 . . . . . . . . . . . . . 14  |-  ( F : RR --> { 0 ,  1 }  /\  ( A  e.  dom  vol 
->  ( `' F " { 1 } )  =  A ) )
2625simpli 445 . . . . . . . . . . . . 13  |-  F : RR
--> { 0 ,  1 }
27 frn 5537 . . . . . . . . . . . . 13  |-  ( F : RR --> { 0 ,  1 }  ->  ran 
F  C_  { 0 ,  1 } )
2826, 27ax-mp 8 . . . . . . . . . . . 12  |-  ran  F  C_ 
{ 0 ,  1 }
29 ssdif 3425 . . . . . . . . . . . 12  |-  ( ran 
F  C_  { 0 ,  1 }  ->  ( ran  F  \  {
0 } )  C_  ( { 0 ,  1 }  \  { 0 } ) )
3028, 29ax-mp 8 . . . . . . . . . . 11  |-  ( ran 
F  \  { 0 } )  C_  ( { 0 ,  1 }  \  { 0 } )
31 difprsnss 3877 . . . . . . . . . . 11  |-  ( { 0 ,  1 } 
\  { 0 } )  C_  { 1 }
3230, 31sstri 3300 . . . . . . . . . 10  |-  ( ran 
F  \  { 0 } )  C_  { 1 }
3332a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( ran  F 
\  { 0 } )  C_  { 1 } )
34 mblss 19294 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
3534adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  A  C_  RR )
3635sselda 3291 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  y  e.  RR )
37 eleq1 2447 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
3837ifbid 3700 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  if ( x  e.  A ,  1 ,  0 )  =  if ( y  e.  A , 
1 ,  0 ) )
39 1ex 9019 . . . . . . . . . . . . . . . 16  |-  1  e.  _V
40 c0ex 9018 . . . . . . . . . . . . . . . 16  |-  0  e.  _V
4139, 40ifex 3740 . . . . . . . . . . . . . . 15  |-  if ( y  e.  A , 
1 ,  0 )  e.  _V
4238, 13, 41fvmpt 5745 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  ( F `  y )  =  if ( y  e.  A ,  1 ,  0 ) )
4336, 42syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( F `  y )  =  if ( y  e.  A ,  1 ,  0 ) )
44 iftrue 3688 . . . . . . . . . . . . . 14  |-  ( y  e.  A  ->  if ( y  e.  A ,  1 ,  0 )  =  1 )
4544adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  if (
y  e.  A , 
1 ,  0 )  =  1 )
4643, 45eqtrd 2419 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( F `  y )  =  1 )
47 ffn 5531 . . . . . . . . . . . . . 14  |-  ( F : RR --> { 0 ,  1 }  ->  F  Fn  RR )
4826, 47ax-mp 8 . . . . . . . . . . . . 13  |-  F  Fn  RR
49 fnfvelrn 5806 . . . . . . . . . . . . 13  |-  ( ( F  Fn  RR  /\  y  e.  RR )  ->  ( F `  y
)  e.  ran  F
)
5048, 36, 49sylancr 645 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( F `  y )  e.  ran  F )
5146, 50eqeltrrd 2462 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  1  e.  ran  F )
52 ax-1ne0 8992 . . . . . . . . . . . 12  |-  1  =/=  0
5352a1i 11 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  1  =/=  0 )
54 eldifsn 3870 . . . . . . . . . . 11  |-  ( 1  e.  ( ran  F  \  { 0 } )  <-> 
( 1  e.  ran  F  /\  1  =/=  0
) )
5551, 53, 54sylanbrc 646 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  1  e.  ( ran  F  \  {
0 } ) )
5655snssd 3886 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  { 1 }  C_  ( ran  F  \  { 0 } ) )
5733, 56eqssd 3308 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( ran  F 
\  { 0 } )  =  { 1 } )
5857sumeq1d 12422 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  sum_ z  e.  ( ran  F  \  { 0 } ) ( z  x.  ( vol `  ( `' F " { z } ) ) )  =  sum_ z  e.  { 1 }  ( z  x.  ( vol `  ( `' F " { z } ) ) ) )
59 1re 9023 . . . . . . . . 9  |-  1  e.  RR
6025simpri 449 . . . . . . . . . . . . . 14  |-  ( A  e.  dom  vol  ->  ( `' F " { 1 } )  =  A )
6160ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( `' F " { 1 } )  =  A )
6261fveq2d 5672 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( vol `  ( `' F " { 1 } ) )  =  ( vol `  A ) )
6362oveq2d 6036 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( 1  x.  ( vol `  ( `' F " { 1 } ) ) )  =  ( 1  x.  ( vol `  A
) ) )
64 simplr 732 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( vol `  A )  e.  RR )
6564recnd 9047 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( vol `  A )  e.  CC )
6665mulid2d 9039 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( 1  x.  ( vol `  A
) )  =  ( vol `  A ) )
6763, 66eqtrd 2419 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( 1  x.  ( vol `  ( `' F " { 1 } ) ) )  =  ( vol `  A
) )
6867, 65eqeltrd 2461 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( 1  x.  ( vol `  ( `' F " { 1 } ) ) )  e.  CC )
69 id 20 . . . . . . . . . . 11  |-  ( z  =  1  ->  z  =  1 )
70 sneq 3768 . . . . . . . . . . . . 13  |-  ( z  =  1  ->  { z }  =  { 1 } )
7170imaeq2d 5143 . . . . . . . . . . . 12  |-  ( z  =  1  ->  ( `' F " { z } )  =  ( `' F " { 1 } ) )
7271fveq2d 5672 . . . . . . . . . . 11  |-  ( z  =  1  ->  ( vol `  ( `' F " { z } ) )  =  ( vol `  ( `' F " { 1 } ) ) )
7369, 72oveq12d 6038 . . . . . . . . . 10  |-  ( z  =  1  ->  (
z  x.  ( vol `  ( `' F " { z } ) ) )  =  ( 1  x.  ( vol `  ( `' F " { 1 } ) ) ) )
7473sumsn 12461 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  ( 1  x.  ( vol `  ( `' F " { 1 } ) ) )  e.  CC )  ->  sum_ z  e.  {
1 }  ( z  x.  ( vol `  ( `' F " { z } ) ) )  =  ( 1  x.  ( vol `  ( `' F " { 1 } ) ) ) )
7559, 68, 74sylancr 645 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  sum_ z  e. 
{ 1 }  (
z  x.  ( vol `  ( `' F " { z } ) ) )  =  ( 1  x.  ( vol `  ( `' F " { 1 } ) ) ) )
7675, 67eqtrd 2419 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  sum_ z  e. 
{ 1 }  (
z  x.  ( vol `  ( `' F " { z } ) ) )  =  ( vol `  A ) )
7758, 76eqtrd 2419 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  sum_ z  e.  ( ran  F  \  { 0 } ) ( z  x.  ( vol `  ( `' F " { z } ) ) )  =  ( vol `  A ) )
7824, 77eqtrd 2419 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( S.1 `  F )  =  ( vol `  A ) )
7978ex 424 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( y  e.  A  ->  ( S.1 `  F )  =  ( vol `  A ) ) )
8079exlimdv 1643 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( E. y 
y  e.  A  -> 
( S.1 `  F )  =  ( vol `  A
) ) )
8120, 80syl5bi 209 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( A  =/=  (/)  ->  ( S.1 `  F
)  =  ( vol `  A ) ) )
8219, 81pm2.61dne 2627 1  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( S.1 `  F
)  =  ( vol `  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717    =/= wne 2550    \ cdif 3260    C_ wss 3263   (/)c0 3571   ifcif 3682   {csn 3757   {cpr 3758    e. cmpt 4207    X. cxp 4816   `'ccnv 4817   dom cdm 4818   ran crn 4819   "cima 4821    Fn wfn 5389   -->wf 5390   ` cfv 5394  (class class class)co 6020   CCcc 8921   RRcr 8922   0cc0 8923   1c1 8924    x. cmul 8928   sum_csu 12406   vol *covol 19226   volcvol 19227   S.1citg1 19374
This theorem is referenced by:  itg2const  19499  itg2addnclem  25957
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-q 10507  df-rp 10545  df-xadd 10643  df-ioo 10852  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-fl 11129  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-clim 12209  df-sum 12407  df-xmet 16619  df-met 16620  df-ovol 19228  df-vol 19229  df-mbf 19379  df-itg1 19380
  Copyright terms: Public domain W3C validator