MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseqle Unicode version

Theorem itg2i1fseqle 19109
Description: Subject to the conditions coming from mbfi1fseq 19076, the sequence of simple functions are all less than the target function  F. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1  |-  ( ph  ->  F  e. MblFn )
itg2i1fseq.2  |-  ( ph  ->  F : RR --> ( 0 [,)  +oo ) )
itg2i1fseq.3  |-  ( ph  ->  P : NN --> dom  S.1 )
itg2i1fseq.4  |-  ( ph  ->  A. n  e.  NN  ( 0 p  o R  <_  ( P `  n )  /\  ( P `  n )  o R  <_  ( P `
 ( n  + 
1 ) ) ) )
itg2i1fseq.5  |-  ( ph  ->  A. x  e.  RR  ( n  e.  NN  |->  ( ( P `  n ) `  x
) )  ~~>  ( F `
 x ) )
Assertion
Ref Expression
itg2i1fseqle  |-  ( (
ph  /\  M  e.  NN )  ->  ( P `
 M )  o R  <_  F )
Distinct variable groups:    x, n, F    n, M    P, n, x
Allowed substitution hints:    ph( x, n)    M( x)

Proof of Theorem itg2i1fseqle
Dummy variables  k 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5525 . . . . . . 7  |-  ( n  =  M  ->  ( P `  n )  =  ( P `  M ) )
21fveq1d 5527 . . . . . 6  |-  ( n  =  M  ->  (
( P `  n
) `  y )  =  ( ( P `
 M ) `  y ) )
3 eqid 2283 . . . . . 6  |-  ( n  e.  NN  |->  ( ( P `  n ) `
 y ) )  =  ( n  e.  NN  |->  ( ( P `
 n ) `  y ) )
4 fvex 5539 . . . . . 6  |-  ( ( P `  M ) `
 y )  e. 
_V
52, 3, 4fvmpt 5602 . . . . 5  |-  ( M  e.  NN  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  M
)  =  ( ( P `  M ) `
 y ) )
65ad2antlr 707 . . . 4  |-  ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  M
)  =  ( ( P `  M ) `
 y ) )
7 nnuz 10263 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
8 simplr 731 . . . . 5  |-  ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  ->  M  e.  NN )
9 itg2i1fseq.5 . . . . . . 7  |-  ( ph  ->  A. x  e.  RR  ( n  e.  NN  |->  ( ( P `  n ) `  x
) )  ~~>  ( F `
 x ) )
10 fveq2 5525 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( P `  n
) `  x )  =  ( ( P `
 n ) `  y ) )
1110mpteq2dv 4107 . . . . . . . . 9  |-  ( x  =  y  ->  (
n  e.  NN  |->  ( ( P `  n
) `  x )
)  =  ( n  e.  NN  |->  ( ( P `  n ) `
 y ) ) )
12 fveq2 5525 . . . . . . . . 9  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
1311, 12breq12d 4036 . . . . . . . 8  |-  ( x  =  y  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  x
) )  ~~>  ( F `
 x )  <->  ( n  e.  NN  |->  ( ( P `
 n ) `  y ) )  ~~>  ( F `
 y ) ) )
1413rspccva 2883 . . . . . . 7  |-  ( ( A. x  e.  RR  ( n  e.  NN  |->  ( ( P `  n ) `  x
) )  ~~>  ( F `
 x )  /\  y  e.  RR )  ->  ( n  e.  NN  |->  ( ( P `  n ) `  y
) )  ~~>  ( F `
 y ) )
159, 14sylan 457 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( n  e.  NN  |->  ( ( P `  n ) `
 y ) )  ~~>  ( F `  y
) )
1615adantlr 695 . . . . 5  |-  ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  ->  (
n  e.  NN  |->  ( ( P `  n
) `  y )
)  ~~>  ( F `  y ) )
17 fveq2 5525 . . . . . . . . . 10  |-  ( n  =  k  ->  ( P `  n )  =  ( P `  k ) )
1817fveq1d 5527 . . . . . . . . 9  |-  ( n  =  k  ->  (
( P `  n
) `  y )  =  ( ( P `
 k ) `  y ) )
19 fvex 5539 . . . . . . . . 9  |-  ( ( P `  k ) `
 y )  e. 
_V
2018, 3, 19fvmpt 5602 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  k
)  =  ( ( P `  k ) `
 y ) )
2120adantl 452 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  k
)  =  ( ( P `  k ) `
 y ) )
22 itg2i1fseq.3 . . . . . . . . . . 11  |-  ( ph  ->  P : NN --> dom  S.1 )
23 ffvelrn 5663 . . . . . . . . . . 11  |-  ( ( P : NN --> dom  S.1  /\  k  e.  NN )  ->  ( P `  k )  e.  dom  S.1 )
2422, 23sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( P `
 k )  e. 
dom  S.1 )
25 i1ff 19031 . . . . . . . . . 10  |-  ( ( P `  k )  e.  dom  S.1  ->  ( P `  k ) : RR --> RR )
2624, 25syl 15 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( P `
 k ) : RR --> RR )
27 ffvelrn 5663 . . . . . . . . 9  |-  ( ( ( P `  k
) : RR --> RR  /\  y  e.  RR )  ->  ( ( P `  k ) `  y
)  e.  RR )
2826, 27sylan 457 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  y  e.  RR )  ->  (
( P `  k
) `  y )  e.  RR )
2928an32s 779 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  k  e.  NN )  ->  (
( P `  k
) `  y )  e.  RR )
3021, 29eqeltrd 2357 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  k
)  e.  RR )
3130adantllr 699 . . . . 5  |-  ( ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( P `  n ) `
 y ) ) `
 k )  e.  RR )
32 itg2i1fseq.4 . . . . . . . . . . . 12  |-  ( ph  ->  A. n  e.  NN  ( 0 p  o R  <_  ( P `  n )  /\  ( P `  n )  o R  <_  ( P `
 ( n  + 
1 ) ) ) )
33 simpr 447 . . . . . . . . . . . . 13  |-  ( ( 0 p  o R  <_  ( P `  n )  /\  ( P `  n )  o R  <_  ( P `
 ( n  + 
1 ) ) )  ->  ( P `  n )  o R  <_  ( P `  ( n  +  1
) ) )
3433ralimi 2618 . . . . . . . . . . . 12  |-  ( A. n  e.  NN  (
0 p  o R  <_  ( P `  n )  /\  ( P `  n )  o R  <_  ( P `
 ( n  + 
1 ) ) )  ->  A. n  e.  NN  ( P `  n )  o R  <_  ( P `  ( n  +  1 ) ) )
3532, 34syl 15 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( P `  n )  o R  <_  ( P `  ( n  +  1 ) ) )
36 oveq1 5865 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
n  +  1 )  =  ( k  +  1 ) )
3736fveq2d 5529 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( P `  ( n  +  1 ) )  =  ( P `  ( k  +  1 ) ) )
3817, 37breq12d 4036 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( P `  n
)  o R  <_ 
( P `  (
n  +  1 ) )  <->  ( P `  k )  o R  <_  ( P `  ( k  +  1 ) ) ) )
3938rspccva 2883 . . . . . . . . . . 11  |-  ( ( A. n  e.  NN  ( P `  n )  o R  <_  ( P `  ( n  +  1 ) )  /\  k  e.  NN )  ->  ( P `  k )  o R  <_  ( P `  ( k  +  1 ) ) )
4035, 39sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( P `
 k )  o R  <_  ( P `  ( k  +  1 ) ) )
41 ffn 5389 . . . . . . . . . . . 12  |-  ( ( P `  k ) : RR --> RR  ->  ( P `  k )  Fn  RR )
4224, 25, 413syl 18 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( P `
 k )  Fn  RR )
43 peano2nn 9758 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
44 ffvelrn 5663 . . . . . . . . . . . . 13  |-  ( ( P : NN --> dom  S.1  /\  ( k  +  1 )  e.  NN )  ->  ( P `  ( k  +  1 ) )  e.  dom  S.1 )
4522, 43, 44syl2an 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( P `
 ( k  +  1 ) )  e. 
dom  S.1 )
46 i1ff 19031 . . . . . . . . . . . 12  |-  ( ( P `  ( k  +  1 ) )  e.  dom  S.1  ->  ( P `  ( k  +  1 ) ) : RR --> RR )
47 ffn 5389 . . . . . . . . . . . 12  |-  ( ( P `  ( k  +  1 ) ) : RR --> RR  ->  ( P `  ( k  +  1 ) )  Fn  RR )
4845, 46, 473syl 18 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( P `
 ( k  +  1 ) )  Fn  RR )
49 reex 8828 . . . . . . . . . . . 12  |-  RR  e.  _V
5049a1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  RR  e.  _V )
51 inidm 3378 . . . . . . . . . . 11  |-  ( RR 
i^i  RR )  =  RR
52 eqidd 2284 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  y  e.  RR )  ->  (
( P `  k
) `  y )  =  ( ( P `
 k ) `  y ) )
53 eqidd 2284 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  y  e.  RR )  ->  (
( P `  (
k  +  1 ) ) `  y )  =  ( ( P `
 ( k  +  1 ) ) `  y ) )
5442, 48, 50, 50, 51, 52, 53ofrfval 6086 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( P `  k )  o R  <_  ( P `  ( k  +  1 ) )  <->  A. y  e.  RR  ( ( P `  k ) `  y
)  <_  ( ( P `  ( k  +  1 ) ) `
 y ) ) )
5540, 54mpbid 201 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  A. y  e.  RR  ( ( P `
 k ) `  y )  <_  (
( P `  (
k  +  1 ) ) `  y ) )
5655r19.21bi 2641 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  y  e.  RR )  ->  (
( P `  k
) `  y )  <_  ( ( P `  ( k  +  1 ) ) `  y
) )
5756an32s 779 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  k  e.  NN )  ->  (
( P `  k
) `  y )  <_  ( ( P `  ( k  +  1 ) ) `  y
) )
58 fveq2 5525 . . . . . . . . . . 11  |-  ( n  =  ( k  +  1 )  ->  ( P `  n )  =  ( P `  ( k  +  1 ) ) )
5958fveq1d 5527 . . . . . . . . . 10  |-  ( n  =  ( k  +  1 )  ->  (
( P `  n
) `  y )  =  ( ( P `
 ( k  +  1 ) ) `  y ) )
60 fvex 5539 . . . . . . . . . 10  |-  ( ( P `  ( k  +  1 ) ) `
 y )  e. 
_V
6159, 3, 60fvmpt 5602 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  NN  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  (
k  +  1 ) )  =  ( ( P `  ( k  +  1 ) ) `
 y ) )
6243, 61syl 15 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  (
k  +  1 ) )  =  ( ( P `  ( k  +  1 ) ) `
 y ) )
6362adantl 452 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  (
k  +  1 ) )  =  ( ( P `  ( k  +  1 ) ) `
 y ) )
6457, 21, 633brtr4d 4053 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  k
)  <_  ( (
n  e.  NN  |->  ( ( P `  n
) `  y )
) `  ( k  +  1 ) ) )
6564adantllr 699 . . . . 5  |-  ( ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( P `  n ) `
 y ) ) `
 k )  <_ 
( ( n  e.  NN  |->  ( ( P `
 n ) `  y ) ) `  ( k  +  1 ) ) )
667, 8, 16, 31, 65climub 12135 . . . 4  |-  ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  M
)  <_  ( F `  y ) )
676, 66eqbrtrrd 4045 . . 3  |-  ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  ->  (
( P `  M
) `  y )  <_  ( F `  y
) )
6867ralrimiva 2626 . 2  |-  ( (
ph  /\  M  e.  NN )  ->  A. y  e.  RR  ( ( P `
 M ) `  y )  <_  ( F `  y )
)
69 ffvelrn 5663 . . . . 5  |-  ( ( P : NN --> dom  S.1  /\  M  e.  NN )  ->  ( P `  M )  e.  dom  S.1 )
7022, 69sylan 457 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  ( P `
 M )  e. 
dom  S.1 )
71 i1ff 19031 . . . 4  |-  ( ( P `  M )  e.  dom  S.1  ->  ( P `  M ) : RR --> RR )
72 ffn 5389 . . . 4  |-  ( ( P `  M ) : RR --> RR  ->  ( P `  M )  Fn  RR )
7370, 71, 723syl 18 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  ( P `
 M )  Fn  RR )
74 itg2i1fseq.2 . . . . . 6  |-  ( ph  ->  F : RR --> ( 0 [,)  +oo ) )
75 rexr 8877 . . . . . . . . 9  |-  ( x  e.  RR  ->  x  e.  RR* )
7675anim1i 551 . . . . . . . 8  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( x  e.  RR*  /\  0  <_  x )
)
77 elrege0 10746 . . . . . . . 8  |-  ( x  e.  ( 0 [,) 
+oo )  <->  ( x  e.  RR  /\  0  <_  x ) )
78 elxrge0 10747 . . . . . . . 8  |-  ( x  e.  ( 0 [,] 
+oo )  <->  ( x  e.  RR*  /\  0  <_  x ) )
7976, 77, 783imtr4i 257 . . . . . . 7  |-  ( x  e.  ( 0 [,) 
+oo )  ->  x  e.  ( 0 [,]  +oo ) )
8079ssriv 3184 . . . . . 6  |-  ( 0 [,)  +oo )  C_  (
0 [,]  +oo )
81 fss 5397 . . . . . 6  |-  ( ( F : RR --> ( 0 [,)  +oo )  /\  (
0 [,)  +oo )  C_  ( 0 [,]  +oo ) )  ->  F : RR --> ( 0 [,] 
+oo ) )
8274, 80, 81sylancl 643 . . . . 5  |-  ( ph  ->  F : RR --> ( 0 [,]  +oo ) )
83 ffn 5389 . . . . 5  |-  ( F : RR --> ( 0 [,]  +oo )  ->  F  Fn  RR )
8482, 83syl 15 . . . 4  |-  ( ph  ->  F  Fn  RR )
8584adantr 451 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  F  Fn  RR )
8649a1i 10 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  RR  e.  _V )
87 eqidd 2284 . . 3  |-  ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  ->  (
( P `  M
) `  y )  =  ( ( P `
 M ) `  y ) )
88 eqidd 2284 . . 3  |-  ( ( ( ph  /\  M  e.  NN )  /\  y  e.  RR )  ->  ( F `  y )  =  ( F `  y ) )
8973, 85, 86, 86, 51, 87, 88ofrfval 6086 . 2  |-  ( (
ph  /\  M  e.  NN )  ->  ( ( P `  M )  o R  <_  F  <->  A. y  e.  RR  (
( P `  M
) `  y )  <_  ( F `  y
) ) )
9068, 89mpbird 223 1  |-  ( (
ph  /\  M  e.  NN )  ->  ( P `
 M )  o R  <_  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   dom cdm 4689    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Rcofr 6077   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    +oocpnf 8864   RR*cxr 8866    <_ cle 8868   NNcn 9746   [,)cico 10658   [,]cicc 10659    ~~> cli 11958  MblFncmbf 18969   S.1citg1 18970   0 pc0p 19024
This theorem is referenced by:  itg2i1fseq  19110  itg2i1fseq3  19112  itg2addlem  19113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-icc 10663  df-fz 10783  df-fl 10925  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-itg1 18976
  Copyright terms: Public domain W3C validator