MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2uba Unicode version

Theorem itg2uba 19098
Description: Approximate version of itg2ub 19088. If  F approximately dominates  G, then  S.1 G  <_  S.2 F. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2uba.1  |-  ( ph  ->  F : RR --> ( 0 [,]  +oo ) )
itg2uba.2  |-  ( ph  ->  G  e.  dom  S.1 )
itg2uba.3  |-  ( ph  ->  A  C_  RR )
itg2uba.4  |-  ( ph  ->  ( vol * `  A )  =  0 )
itg2uba.5  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( G `  x )  <_  ( F `  x )
)
Assertion
Ref Expression
itg2uba  |-  ( ph  ->  ( S.1 `  G
)  <_  ( S.2 `  F ) )
Distinct variable groups:    x, A    x, F    x, G    ph, x

Proof of Theorem itg2uba
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 itg2uba.2 . . . 4  |-  ( ph  ->  G  e.  dom  S.1 )
2 itg1cl 19040 . . . 4  |-  ( G  e.  dom  S.1  ->  ( S.1 `  G )  e.  RR )
31, 2syl 15 . . 3  |-  ( ph  ->  ( S.1 `  G
)  e.  RR )
43rexrd 8881 . 2  |-  ( ph  ->  ( S.1 `  G
)  e.  RR* )
5 itg2uba.3 . . . . . . 7  |-  ( ph  ->  A  C_  RR )
6 itg2uba.4 . . . . . . 7  |-  ( ph  ->  ( vol * `  A )  =  0 )
7 nulmbl 18893 . . . . . . 7  |-  ( ( A  C_  RR  /\  ( vol * `  A )  =  0 )  ->  A  e.  dom  vol )
85, 6, 7syl2anc 642 . . . . . 6  |-  ( ph  ->  A  e.  dom  vol )
9 cmmbl 18892 . . . . . 6  |-  ( A  e.  dom  vol  ->  ( RR  \  A )  e.  dom  vol )
108, 9syl 15 . . . . 5  |-  ( ph  ->  ( RR  \  A
)  e.  dom  vol )
11 ifnot 3603 . . . . . . . 8  |-  if ( -.  x  e.  A ,  ( G `  x ) ,  0 )  =  if ( x  e.  A , 
0 ,  ( G `
 x ) )
12 eldif 3162 . . . . . . . . . 10  |-  ( x  e.  ( RR  \  A )  <->  ( x  e.  RR  /\  -.  x  e.  A ) )
1312baibr 872 . . . . . . . . 9  |-  ( x  e.  RR  ->  ( -.  x  e.  A  <->  x  e.  ( RR  \  A ) ) )
1413ifbid 3583 . . . . . . . 8  |-  ( x  e.  RR  ->  if ( -.  x  e.  A ,  ( G `  x ) ,  0 )  =  if ( x  e.  ( RR 
\  A ) ,  ( G `  x
) ,  0 ) )
1511, 14syl5eqr 2329 . . . . . . 7  |-  ( x  e.  RR  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  if ( x  e.  ( RR 
\  A ) ,  ( G `  x
) ,  0 ) )
1615mpteq2ia 4102 . . . . . 6  |-  ( x  e.  RR  |->  if ( x  e.  A , 
0 ,  ( G `
 x ) ) )  =  ( x  e.  RR  |->  if ( x  e.  ( RR 
\  A ) ,  ( G `  x
) ,  0 ) )
1716i1fres 19060 . . . . 5  |-  ( ( G  e.  dom  S.1  /\  ( RR  \  A
)  e.  dom  vol )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  e.  dom  S.1 )
181, 10, 17syl2anc 642 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  e.  dom  S.1 )
19 itg1cl 19040 . . . 4  |-  ( ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  e.  dom  S.1 
->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  e.  RR )
2018, 19syl 15 . . 3  |-  ( ph  ->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  e.  RR )
2120rexrd 8881 . 2  |-  ( ph  ->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  e. 
RR* )
22 itg2uba.1 . . 3  |-  ( ph  ->  F : RR --> ( 0 [,]  +oo ) )
23 itg2cl 19087 . . 3  |-  ( F : RR --> ( 0 [,]  +oo )  ->  ( S.2 `  F )  e. 
RR* )
2422, 23syl 15 . 2  |-  ( ph  ->  ( S.2 `  F
)  e.  RR* )
25 i1ff 19031 . . . . . . 7  |-  ( G  e.  dom  S.1  ->  G : RR --> RR )
261, 25syl 15 . . . . . 6  |-  ( ph  ->  G : RR --> RR )
27 eldifi 3298 . . . . . 6  |-  ( y  e.  ( RR  \  A )  ->  y  e.  RR )
28 ffvelrn 5663 . . . . . 6  |-  ( ( G : RR --> RR  /\  y  e.  RR )  ->  ( G `  y
)  e.  RR )
2926, 27, 28syl2an 463 . . . . 5  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( G `  y )  e.  RR )
3029leidd 9339 . . . 4  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( G `  y )  <_  ( G `  y )
)
31 eldif 3162 . . . . . 6  |-  ( y  e.  ( RR  \  A )  <->  ( y  e.  RR  /\  -.  y  e.  A ) )
32 eleq1 2343 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
33 fveq2 5525 . . . . . . . . 9  |-  ( x  =  y  ->  ( G `  x )  =  ( G `  y ) )
3432, 33ifbieq2d 3585 . . . . . . . 8  |-  ( x  =  y  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  if ( y  e.  A , 
0 ,  ( G `
 y ) ) )
35 eqid 2283 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  A , 
0 ,  ( G `
 x ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
0 ,  ( G `
 x ) ) )
36 c0ex 8832 . . . . . . . . 9  |-  0  e.  _V
37 fvex 5539 . . . . . . . . 9  |-  ( G `
 y )  e. 
_V
3836, 37ifex 3623 . . . . . . . 8  |-  if ( y  e.  A , 
0 ,  ( G `
 y ) )  e.  _V
3934, 35, 38fvmpt 5602 . . . . . . 7  |-  ( y  e.  RR  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
)  =  if ( y  e.  A , 
0 ,  ( G `
 y ) ) )
40 iffalse 3572 . . . . . . 7  |-  ( -.  y  e.  A  ->  if ( y  e.  A ,  0 ,  ( G `  y ) )  =  ( G `
 y ) )
4139, 40sylan9eq 2335 . . . . . 6  |-  ( ( y  e.  RR  /\  -.  y  e.  A
)  ->  ( (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
)  =  ( G `
 y ) )
4231, 41sylbi 187 . . . . 5  |-  ( y  e.  ( RR  \  A )  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
)  =  ( G `
 y ) )
4342adantl 452 . . . 4  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
)  =  ( G `
 y ) )
4430, 43breqtrrd 4049 . . 3  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( G `  y )  <_  (
( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
) )
451, 5, 6, 18, 44itg1lea 19067 . 2  |-  ( ph  ->  ( S.1 `  G
)  <_  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) ) )
46 iftrue 3571 . . . . . . . 8  |-  ( x  e.  A  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  0 )
4746adantl 452 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  A )  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  0 )
48 ffvelrn 5663 . . . . . . . . . . 11  |-  ( ( F : RR --> ( 0 [,]  +oo )  /\  x  e.  RR )  ->  ( F `  x )  e.  ( 0 [,]  +oo ) )
4922, 48sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,]  +oo ) )
50 elxrge0 10747 . . . . . . . . . 10  |-  ( ( F `  x )  e.  ( 0 [,] 
+oo )  <->  ( ( F `  x )  e.  RR*  /\  0  <_ 
( F `  x
) ) )
5149, 50sylib 188 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR*  /\  0  <_  ( F `  x
) ) )
5251simprd 449 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( F `  x
) )
5352adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  A )  ->  0  <_  ( F `  x
) )
5447, 53eqbrtrd 4043 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  A )  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  <_  ( F `  x ) )
55 iffalse 3572 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  ( G `
 x ) )
5655adantl 452 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  A )  ->  if ( x  e.  A ,  0 ,  ( G `  x
) )  =  ( G `  x ) )
57 itg2uba.5 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( G `  x )  <_  ( F `  x )
)
5812, 57sylan2br 462 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR  /\  -.  x  e.  A ) )  -> 
( G `  x
)  <_  ( F `  x ) )
5958anassrs 629 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  A )  ->  ( G `  x
)  <_  ( F `  x ) )
6056, 59eqbrtrd 4043 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  A )  ->  if ( x  e.  A ,  0 ,  ( G `  x
) )  <_  ( F `  x )
)
6154, 60pm2.61dan 766 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
0 ,  ( G `
 x ) )  <_  ( F `  x ) )
6261ralrimiva 2626 . . . 4  |-  ( ph  ->  A. x  e.  RR  if ( x  e.  A ,  0 ,  ( G `  x ) )  <_  ( F `  x ) )
63 reex 8828 . . . . . 6  |-  RR  e.  _V
6463a1i 10 . . . . 5  |-  ( ph  ->  RR  e.  _V )
65 fvex 5539 . . . . . . 7  |-  ( G `
 x )  e. 
_V
6636, 65ifex 3623 . . . . . 6  |-  if ( x  e.  A , 
0 ,  ( G `
 x ) )  e.  _V
6766a1i 10 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
0 ,  ( G `
 x ) )  e.  _V )
68 fvex 5539 . . . . . 6  |-  ( F `
 x )  e. 
_V
6968a1i 10 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e. 
_V )
70 eqidd 2284 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )
7122feqmptd 5575 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  RR  |->  ( F `
 x ) ) )
7264, 67, 69, 70, 71ofrfval2 6096 . . . 4  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  o R  <_  F  <->  A. x  e.  RR  if ( x  e.  A ,  0 ,  ( G `  x ) )  <_  ( F `  x ) ) )
7362, 72mpbird 223 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  o R  <_  F )
74 itg2ub 19088 . . 3  |-  ( ( F : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  e.  dom  S.1 
/\  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  o R  <_  F
)  ->  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  <_ 
( S.2 `  F ) )
7522, 18, 73, 74syl3anc 1182 . 2  |-  ( ph  ->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  <_ 
( S.2 `  F ) )
764, 21, 24, 45, 75xrletrd 10493 1  |-  ( ph  ->  ( S.1 `  G
)  <_  ( S.2 `  F ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    \ cdif 3149    C_ wss 3152   ifcif 3565   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Rcofr 6077   RRcr 8736   0cc0 8737    +oocpnf 8864   RR*cxr 8866    <_ cle 8868   [,]cicc 10659   vol *covol 18822   volcvol 18823   S.1citg1 18970   S.2citg2 18971
This theorem is referenced by:  itg2lea  19099  itg2split  19104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-rest 13327  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-cmp 17114  df-ovol 18824  df-vol 18825  df-mbf 18975  df-itg1 18976  df-itg2 18977
  Copyright terms: Public domain W3C validator