MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2val Unicode version

Theorem itg2val 19083
Description: Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypothesis
Ref Expression
itg2val.1  |-  L  =  { x  |  E. g  e.  dom  S.1 (
g  o R  <_  F  /\  x  =  ( S.1 `  g ) ) }
Assertion
Ref Expression
itg2val  |-  ( F : RR --> ( 0 [,]  +oo )  ->  ( S.2 `  F )  =  sup ( L ,  RR* ,  <  ) )
Distinct variable group:    x, g, F
Allowed substitution hints:    L( x, g)

Proof of Theorem itg2val
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 xrltso 10475 . . 3  |-  <  Or  RR*
21supex 7214 . 2  |-  sup ( L ,  RR* ,  <  )  e.  _V
3 reex 8828 . 2  |-  RR  e.  _V
4 ovex 5883 . 2  |-  ( 0 [,]  +oo )  e.  _V
5 breq2 4027 . . . . . . 7  |-  ( f  =  F  ->  (
g  o R  <_ 
f  <->  g  o R  <_  F ) )
65anbi1d 685 . . . . . 6  |-  ( f  =  F  ->  (
( g  o R  <_  f  /\  x  =  ( S.1 `  g
) )  <->  ( g  o R  <_  F  /\  x  =  ( S.1 `  g ) ) ) )
76rexbidv 2564 . . . . 5  |-  ( f  =  F  ->  ( E. g  e.  dom  S.1 ( g  o R  <_  f  /\  x  =  ( S.1 `  g
) )  <->  E. g  e.  dom  S.1 ( g  o R  <_  F  /\  x  =  ( S.1 `  g ) ) ) )
87abbidv 2397 . . . 4  |-  ( f  =  F  ->  { x  |  E. g  e.  dom  S.1 ( g  o R  <_  f  /\  x  =  ( S.1 `  g
) ) }  =  { x  |  E. g  e.  dom  S.1 (
g  o R  <_  F  /\  x  =  ( S.1 `  g ) ) } )
9 itg2val.1 . . . 4  |-  L  =  { x  |  E. g  e.  dom  S.1 (
g  o R  <_  F  /\  x  =  ( S.1 `  g ) ) }
108, 9syl6eqr 2333 . . 3  |-  ( f  =  F  ->  { x  |  E. g  e.  dom  S.1 ( g  o R  <_  f  /\  x  =  ( S.1 `  g
) ) }  =  L )
1110supeq1d 7199 . 2  |-  ( f  =  F  ->  sup ( { x  |  E. g  e.  dom  S.1 (
g  o R  <_ 
f  /\  x  =  ( S.1 `  g ) ) } ,  RR* ,  <  )  =  sup ( L ,  RR* ,  <  ) )
12 df-itg2 18977 . 2  |-  S.2  =  ( f  e.  ( ( 0 [,]  +oo )  ^m  RR )  |->  sup ( { x  |  E. g  e.  dom  S.1 ( g  o R  <_  f  /\  x  =  ( S.1 `  g
) ) } ,  RR* ,  <  ) )
132, 3, 4, 11, 12fvmptmap 6804 1  |-  ( F : RR --> ( 0 [,]  +oo )  ->  ( S.2 `  F )  =  sup ( L ,  RR* ,  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623   {cab 2269   E.wrex 2544   class class class wbr 4023   dom cdm 4689   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Rcofr 6077   supcsup 7193   RRcr 8736   0cc0 8737    +oocpnf 8864   RR*cxr 8866    < clt 8867    <_ cle 8868   [,]cicc 10659   S.1citg1 18970   S.2citg2 18971
This theorem is referenced by:  itg2cl  19087  itg2ub  19088  itg2leub  19089
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-itg2 18977
  Copyright terms: Public domain W3C validator