MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgadd Unicode version

Theorem itgadd 19179
Description: Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itgadd.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgadd.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
itgadd.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
itgadd.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L ^1 )
Assertion
Ref Expression
itgadd  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A B  _d x  +  S. A C  _d x ) )
Distinct variable groups:    x, A    x, V    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem itgadd
StepHypRef Expression
1 itgadd.2 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
2 iblmbf 19122 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  e.  L ^1 
->  ( x  e.  A  |->  B )  e. MblFn )
31, 2syl 15 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
4 itgadd.1 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
53, 4mbfmptcl 18992 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
6 itgadd.4 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L ^1 )
7 iblmbf 19122 . . . . . . . . 9  |-  ( ( x  e.  A  |->  C )  e.  L ^1 
->  ( x  e.  A  |->  C )  e. MblFn )
86, 7syl 15 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
9 itgadd.3 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
108, 9mbfmptcl 18992 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
115, 10readdd 11699 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( B  +  C ) )  =  ( ( Re `  B )  +  ( Re `  C ) ) )
1211itgeq2dv 19136 . . . . 5  |-  ( ph  ->  S. A ( Re
`  ( B  +  C ) )  _d x  =  S. A
( ( Re `  B )  +  ( Re `  C ) )  _d x )
135recld 11679 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
145iblcn 19153 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L ^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L ^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L ^1 ) ) )
151, 14mpbid 201 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L ^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L ^1 ) )
1615simpld 445 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L ^1 )
1710recld 11679 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  RR )
1810iblcn 19153 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e.  L ^1  <->  ( (
x  e.  A  |->  ( Re `  C ) )  e.  L ^1 
/\  ( x  e.  A  |->  ( Im `  C ) )  e.  L ^1 ) ) )
196, 18mpbid 201 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  C ) )  e.  L ^1  /\  (
x  e.  A  |->  ( Im `  C ) )  e.  L ^1 ) )
2019simpld 445 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  C
) )  e.  L ^1 )
2113, 16, 17, 20, 13, 17itgaddlem2 19178 . . . . 5  |-  ( ph  ->  S. A ( ( Re `  B )  +  ( Re `  C ) )  _d x  =  ( S. A ( Re `  B )  _d x  +  S. A ( Re `  C )  _d x ) )
2212, 21eqtrd 2315 . . . 4  |-  ( ph  ->  S. A ( Re
`  ( B  +  C ) )  _d x  =  ( S. A ( Re `  B )  _d x  +  S. A ( Re `  C )  _d x ) )
235, 10imaddd 11700 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  ( B  +  C ) )  =  ( ( Im `  B )  +  ( Im `  C ) ) )
2423itgeq2dv 19136 . . . . . . 7  |-  ( ph  ->  S. A ( Im
`  ( B  +  C ) )  _d x  =  S. A
( ( Im `  B )  +  ( Im `  C ) )  _d x )
255imcld 11680 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
2615simprd 449 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L ^1 )
2710imcld 11680 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  RR )
2819simprd 449 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  C
) )  e.  L ^1 )
2925, 26, 27, 28, 25, 27itgaddlem2 19178 . . . . . . 7  |-  ( ph  ->  S. A ( ( Im `  B )  +  ( Im `  C ) )  _d x  =  ( S. A ( Im `  B )  _d x  +  S. A ( Im `  C )  _d x ) )
3024, 29eqtrd 2315 . . . . . 6  |-  ( ph  ->  S. A ( Im
`  ( B  +  C ) )  _d x  =  ( S. A ( Im `  B )  _d x  +  S. A ( Im `  C )  _d x ) )
3130oveq2d 5874 . . . . 5  |-  ( ph  ->  ( _i  x.  S. A ( Im `  ( B  +  C
) )  _d x )  =  ( _i  x.  ( S. A
( Im `  B
)  _d x  +  S. A ( Im `  C )  _d x ) ) )
32 ax-icn 8796 . . . . . . 7  |-  _i  e.  CC
3332a1i 10 . . . . . 6  |-  ( ph  ->  _i  e.  CC )
3425, 26itgcl 19138 . . . . . 6  |-  ( ph  ->  S. A ( Im
`  B )  _d x  e.  CC )
3527, 28itgcl 19138 . . . . . 6  |-  ( ph  ->  S. A ( Im
`  C )  _d x  e.  CC )
3633, 34, 35adddid 8859 . . . . 5  |-  ( ph  ->  ( _i  x.  ( S. A ( Im `  B )  _d x  +  S. A ( Im `  C )  _d x ) )  =  ( ( _i  x.  S. A ( Im `  B )  _d x )  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) )
3731, 36eqtrd 2315 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( Im `  ( B  +  C
) )  _d x )  =  ( ( _i  x.  S. A
( Im `  B
)  _d x )  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) )
3822, 37oveq12d 5876 . . 3  |-  ( ph  ->  ( S. A ( Re `  ( B  +  C ) )  _d x  +  ( _i  x.  S. A
( Im `  ( B  +  C )
)  _d x ) )  =  ( ( S. A ( Re
`  B )  _d x  +  S. A
( Re `  C
)  _d x )  +  ( ( _i  x.  S. A ( Im `  B )  _d x )  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) ) )
3913, 16itgcl 19138 . . . 4  |-  ( ph  ->  S. A ( Re
`  B )  _d x  e.  CC )
4017, 20itgcl 19138 . . . 4  |-  ( ph  ->  S. A ( Re
`  C )  _d x  e.  CC )
41 mulcl 8821 . . . . 5  |-  ( ( _i  e.  CC  /\  S. A ( Im `  B )  _d x  e.  CC )  -> 
( _i  x.  S. A ( Im `  B )  _d x )  e.  CC )
4232, 34, 41sylancr 644 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( Im `  B )  _d x )  e.  CC )
43 mulcl 8821 . . . . 5  |-  ( ( _i  e.  CC  /\  S. A ( Im `  C )  _d x  e.  CC )  -> 
( _i  x.  S. A ( Im `  C )  _d x )  e.  CC )
4432, 35, 43sylancr 644 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( Im `  C )  _d x )  e.  CC )
4539, 40, 42, 44add4d 9035 . . 3  |-  ( ph  ->  ( ( S. A
( Re `  B
)  _d x  +  S. A ( Re `  C )  _d x )  +  ( ( _i  x.  S. A
( Im `  B
)  _d x )  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) )  =  ( ( S. A
( Re `  B
)  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) )  +  ( S. A ( Re
`  C )  _d x  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) ) )
4638, 45eqtrd 2315 . 2  |-  ( ph  ->  ( S. A ( Re `  ( B  +  C ) )  _d x  +  ( _i  x.  S. A
( Im `  ( B  +  C )
)  _d x ) )  =  ( ( S. A ( Re
`  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) )  +  ( S. A
( Re `  C
)  _d x  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) ) )
47 ovex 5883 . . . 4  |-  ( B  +  C )  e. 
_V
4847a1i 10 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  _V )
494, 1, 9, 6ibladd 19175 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  L ^1 )
5048, 49itgcnval 19154 . 2  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A ( Re `  ( B  +  C
) )  _d x  +  ( _i  x.  S. A ( Im `  ( B  +  C
) )  _d x ) ) )
514, 1itgcnval 19154 . . 3  |-  ( ph  ->  S. A B  _d x  =  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )
529, 6itgcnval 19154 . . 3  |-  ( ph  ->  S. A C  _d x  =  ( S. A ( Re `  C )  _d x  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) )
5351, 52oveq12d 5876 . 2  |-  ( ph  ->  ( S. A B  _d x  +  S. A C  _d x
)  =  ( ( S. A ( Re
`  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) )  +  ( S. A
( Re `  C
)  _d x  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) ) )
5446, 50, 533eqtr4d 2325 1  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A B  _d x  +  S. A C  _d x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   _ici 8739    + caddc 8740    x. cmul 8742   Recre 11582   Imcim 11583  MblFncmbf 18969   L ^1cibl 18972   S.citg 18973
This theorem is referenced by:  itgsub  19180  itgfsum  19181  itgmulc2  19188  ftc1lem4  19386  itgparts  19394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-rest 13327  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-cmp 17114  df-ovol 18824  df-vol 18825  df-mbf 18975  df-itg1 18976  df-itg2 18977  df-ibl 18978  df-itg 18979  df-0p 19025
  Copyright terms: Public domain W3C validator