MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcn Unicode version

Theorem itgcn 19197
Description: Transfer itg2cn 19118 to the full Lebesgue integral. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itgcn.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgcn.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
itgcn.3  |-  ( ph  ->  C  e.  RR+ )
Assertion
Ref Expression
itgcn  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( u  C_  A  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  B )  _d x  <  C ) )
Distinct variable groups:    u, d, x, A    B, d, u    C, d, u    ph, d, u, x
Allowed substitution hints:    B( x)    C( x)    V( x, u, d)

Proof of Theorem itgcn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 itgcn.2 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
2 iblmbf 19122 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  B )  e.  L ^1 
->  ( x  e.  A  |->  B )  e. MblFn )
31, 2syl 15 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
4 itgcn.1 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
53, 4mbfmptcl 18992 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
65abscld 11918 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
75absge0d 11926 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  B
) )
8 elrege0 10746 . . . . . . 7  |-  ( ( abs `  B )  e.  ( 0 [,) 
+oo )  <->  ( ( abs `  B )  e.  RR  /\  0  <_ 
( abs `  B
) ) )
96, 7, 8sylanbrc 645 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  ( 0 [,)  +oo ) )
10 0re 8838 . . . . . . . 8  |-  0  e.  RR
11 0le0 9827 . . . . . . . 8  |-  0  <_  0
12 elrege0 10746 . . . . . . . 8  |-  ( 0  e.  ( 0 [,) 
+oo )  <->  ( 0  e.  RR  /\  0  <_  0 ) )
1310, 11, 12mpbir2an 886 . . . . . . 7  |-  0  e.  ( 0 [,)  +oo )
1413a1i 10 . . . . . 6  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,)  +oo ) )
159, 14ifclda 3592 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
1615adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  B
) ,  0 )  e.  ( 0 [,) 
+oo ) )
17 eqid 2283 . . . 4  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )
1816, 17fmptd 5684 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
193, 4mbfdm2 18993 . . . . 5  |-  ( ph  ->  A  e.  dom  vol )
20 mblss 18890 . . . . 5  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
2119, 20syl 15 . . . 4  |-  ( ph  ->  A  C_  RR )
22 rembl 18898 . . . . 5  |-  RR  e.  dom  vol
2322a1i 10 . . . 4  |-  ( ph  ->  RR  e.  dom  vol )
2415adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  e.  ( 0 [,) 
+oo ) )
25 eldifn 3299 . . . . . 6  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
2625adantl 452 . . . . 5  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  x  e.  A )
27 iffalse 3572 . . . . 5  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  0 )
2826, 27syl 15 . . . 4  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
x  e.  A , 
( abs `  B
) ,  0 )  =  0 )
29 iftrue 3571 . . . . . 6  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
) )
3029mpteq2ia 4102 . . . . 5  |-  ( x  e.  A  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( x  e.  A  |->  ( abs `  B ) )
314, 1iblabs 19183 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L ^1 )
326, 7iblpos 19147 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e.  L ^1 
<->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) ) )
3331, 32mpbid 201 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) )
3433simpld 445 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e. MblFn )
3530, 34syl5eqel 2367 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )  e. MblFn )
3621, 23, 24, 28, 35mbfss 19001 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  e. MblFn )
3733simprd 449 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  e.  RR )
38 itgcn.3 . . 3  |-  ( ph  ->  C  e.  RR+ )
3918, 36, 37, 38itg2cn 19118 . 2  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C ) )
40 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  u  C_  A )
4140sselda 3180 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  u )  ->  x  e.  A )
425adantlr 695 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  A )  ->  B  e.  CC )
4341, 42syldan 456 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  u )  ->  B  e.  CC )
4443abscld 11918 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  u )  ->  ( abs `  B )  e.  RR )
45 simprl 732 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  u  e.  dom  vol )
4642abscld 11918 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
4731adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  A  |->  ( abs `  B
) )  e.  L ^1 )
4840, 45, 46, 47iblss 19159 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  u  |->  ( abs `  B
) )  e.  L ^1 )
4943absge0d 11926 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  u )  ->  0  <_  ( abs `  B
) )
5044, 48, 49itgposval 19150 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  S. u ( abs `  B
)  _d x  =  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  u ,  ( abs `  B
) ,  0 ) ) ) )
5140sseld 3179 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  u  ->  x  e.  A ) )
5251pm4.71d 615 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  u  <->  ( x  e.  u  /\  x  e.  A )
) )
5352ifbid 3583 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  if ( x  e.  u ,  ( abs `  B
) ,  0 )  =  if ( ( x  e.  u  /\  x  e.  A ) ,  ( abs `  B
) ,  0 ) )
54 ifan 3604 . . . . . . . . . . . . . . 15  |-  if ( ( x  e.  u  /\  x  e.  A
) ,  ( abs `  B ) ,  0 )  =  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 )
5553, 54syl6eq 2331 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  if ( x  e.  u ,  ( abs `  B
) ,  0 )  =  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ,  0 ) )
5655mpteq2dv 4107 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  RR  |->  if ( x  e.  u ,  ( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) ) )
5756fveq2d 5529 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( abs `  B
) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) ) ) )
5850, 57eqtrd 2315 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  S. u ( abs `  B
)  _d x  =  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) ) ) )
59 nfv 1605 . . . . . . . . . . . . . . 15  |-  F/ x  y  e.  u
60 nfmpt1 4109 . . . . . . . . . . . . . . . 16  |-  F/_ x
( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )
61 nfcv 2419 . . . . . . . . . . . . . . . 16  |-  F/_ x
y
6260, 61nffv 5532 . . . . . . . . . . . . . . 15  |-  F/_ x
( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y )
63 nfcv 2419 . . . . . . . . . . . . . . 15  |-  F/_ x
0
6459, 62, 63nfif 3589 . . . . . . . . . . . . . 14  |-  F/_ x if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 )
65 nfcv 2419 . . . . . . . . . . . . . 14  |-  F/_ y if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  x ) ,  0 )
66 elequ1 1687 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
y  e.  u  <->  x  e.  u ) )
67 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) `  y )  =  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  x ) )
68 eqidd 2284 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  0  =  0 )
6966, 67, 68ifbieq12d 3587 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 )  =  if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) `  x ) ,  0 ) )
7064, 65, 69cbvmpt 4110 . . . . . . . . . . . . 13  |-  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  x ) ,  0 ) )
71 fvex 5539 . . . . . . . . . . . . . . . . 17  |-  ( abs `  B )  e.  _V
72 c0ex 8832 . . . . . . . . . . . . . . . . 17  |-  0  e.  _V
7371, 72ifex 3623 . . . . . . . . . . . . . . . 16  |-  if ( x  e.  A , 
( abs `  B
) ,  0 )  e.  _V
7417fvmpt2 5608 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  if ( x  e.  A ,  ( abs `  B
) ,  0 )  e.  _V )  -> 
( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 x )  =  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )
7573, 74mpan2 652 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) `  x )  =  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )
7675ifeq1d 3579 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  x ) ,  0 )  =  if ( x  e.  u ,  if ( x  e.  A , 
( abs `  B
) ,  0 ) ,  0 ) )
7776mpteq2ia 4102 . . . . . . . . . . . . 13  |-  ( x  e.  RR  |->  if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) )
7870, 77eqtri 2303 . . . . . . . . . . . 12  |-  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) )
7978fveq2i 5528 . . . . . . . . . . 11  |-  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) ) )
8058, 79syl6eqr 2333 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  S. u ( abs `  B
)  _d x  =  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) ) )
8180breq1d 4033 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( S. u ( abs `  B )  _d x  <  C  <->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C ) )
8281biimprd 214 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) )  <  C  ->  S. u ( abs `  B
)  _d x  < 
C ) )
8382imim2d 48 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( ( ( vol `  u )  <  d  ->  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) )  <  C )  ->  ( ( vol `  u )  <  d  ->  S. u ( abs `  B )  _d x  <  C ) ) )
8483expr 598 . . . . . 6  |-  ( (
ph  /\  u  e.  dom  vol )  ->  (
u  C_  A  ->  ( ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C )  -> 
( ( vol `  u
)  <  d  ->  S. u ( abs `  B
)  _d x  < 
C ) ) ) )
8584com23 72 . . . . 5  |-  ( (
ph  /\  u  e.  dom  vol )  ->  (
( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C )  -> 
( u  C_  A  ->  ( ( vol `  u
)  <  d  ->  S. u ( abs `  B
)  _d x  < 
C ) ) ) )
8685imp4a 572 . . . 4  |-  ( (
ph  /\  u  e.  dom  vol )  ->  (
( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C )  -> 
( ( u  C_  A  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  B )  _d x  <  C ) ) )
8786ralimdva 2621 . . 3  |-  ( ph  ->  ( A. u  e. 
dom  vol ( ( vol `  u )  <  d  ->  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) )  <  C )  ->  A. u  e.  dom  vol ( ( u  C_  A  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  B )  _d x  <  C ) ) )
8887reximdv 2654 . 2  |-  ( ph  ->  ( E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C )  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( u  C_  A  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  B
)  _d x  < 
C ) ) )
8939, 88mpd 14 1  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( u  C_  A  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  B )  _d x  <  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    \ cdif 3149    C_ wss 3152   ifcif 3565   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737    +oocpnf 8864    < clt 8867    <_ cle 8868   RR+crp 10354   [,)cico 10658   abscabs 11719   volcvol 18823  MblFncmbf 18969   S.2citg2 18971   L ^1cibl 18972   S.citg 18973
This theorem is referenced by:  ftc1a  19384
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cn 16957  df-cnp 16958  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-ovol 18824  df-vol 18825  df-mbf 18975  df-itg1 18976  df-itg2 18977  df-ibl 18978  df-itg 18979  df-0p 19025
  Copyright terms: Public domain W3C validator