MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcnval Unicode version

Theorem itgcnval 19560
Description: Decompose the integral of a complex function into real and imaginary parts. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
itgcnval.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgcnval.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
Assertion
Ref Expression
itgcnval  |-  ( ph  ->  S. A B  _d x  =  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )
Distinct variable groups:    x, A    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgcnval
StepHypRef Expression
1 eqid 2389 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )
2 eqid 2389 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )
3 eqid 2389 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )
4 eqid 2389 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) )
5 itgcnval.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
6 itgcnval.2 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
71, 2, 3, 4, 5, 6itgcnlem 19550 . 2  |-  ( ph  ->  S. A B  _d x  =  ( ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) ) )  +  ( _i  x.  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  B ) ) ,  ( Im `  B ) ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) ) ) ) ) )
8 iblmbf 19528 . . . . . . 7  |-  ( ( x  e.  A  |->  B )  e.  L ^1 
->  ( x  e.  A  |->  B )  e. MblFn )
96, 8syl 16 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
109, 5mbfmptcl 19398 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
1110recld 11928 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
1210iblcn 19559 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L ^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L ^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L ^1 ) ) )
136, 12mpbid 202 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L ^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L ^1 ) )
1413simpld 446 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L ^1 )
1511, 14itgrevallem1 19555 . . 3  |-  ( ph  ->  S. A ( Re
`  B )  _d x  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  B ) ) ,  ( Re `  B ) ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  B )
) ,  -u (
Re `  B ) ,  0 ) ) ) ) )
1610imcld 11929 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
1713simprd 450 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L ^1 )
1816, 17itgrevallem1 19555 . . . 4  |-  ( ph  ->  S. A ( Im
`  B )  _d x  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  B ) ) ,  ( Im `  B ) ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) ) ) )
1918oveq2d 6038 . . 3  |-  ( ph  ->  ( _i  x.  S. A ( Im `  B )  _d x )  =  ( _i  x.  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) ) ) ) )
2015, 19oveq12d 6040 . 2  |-  ( ph  ->  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A
( Im `  B
)  _d x ) )  =  ( ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) ) )  +  ( _i  x.  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  B ) ) ,  ( Im `  B ) ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) ) ) ) ) )
217, 20eqtr4d 2424 1  |-  ( ph  ->  S. A B  _d x  =  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   ifcif 3684   class class class wbr 4155    e. cmpt 4209   ` cfv 5396  (class class class)co 6022   RRcr 8924   0cc0 8925   _ici 8927    + caddc 8928    x. cmul 8930    <_ cle 9056    - cmin 9225   -ucneg 9226   Recre 11831   Imcim 11832  MblFncmbf 19375   S.2citg2 19377   L ^1cibl 19378   S.citg 19379
This theorem is referenced by:  itgre  19561  itgim  19562  itgneg  19564  itgconst  19579  itgadd  19585  itgmulc2  19594  itgaddnc  25967  itgmulc2nc  25975
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003  ax-addf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-disj 4126  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-ofr 6247  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-2o 6663  df-oadd 6666  df-er 6843  df-map 6958  df-pm 6959  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-sup 7383  df-oi 7414  df-card 7761  df-cda 7983  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-n0 10156  df-z 10217  df-uz 10423  df-q 10509  df-rp 10547  df-xadd 10645  df-ioo 10854  df-ico 10856  df-icc 10857  df-fz 10978  df-fzo 11068  df-fl 11131  df-mod 11180  df-seq 11253  df-exp 11312  df-hash 11548  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970  df-clim 12211  df-sum 12409  df-xmet 16621  df-met 16622  df-ovol 19230  df-vol 19231  df-mbf 19381  df-itg1 19382  df-itg2 19383  df-ibl 19384  df-itg 19385  df-0p 19431
  Copyright terms: Public domain W3C validator