MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcnval Structured version   Unicode version

Theorem itgcnval 19683
Description: Decompose the integral of a complex function into real and imaginary parts. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
itgcnval.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgcnval.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
Assertion
Ref Expression
itgcnval  |-  ( ph  ->  S. A B  _d x  =  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )
Distinct variable groups:    x, A    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgcnval
StepHypRef Expression
1 eqid 2435 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )
2 eqid 2435 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )
3 eqid 2435 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )
4 eqid 2435 . . 3  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) )
5 itgcnval.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
6 itgcnval.2 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
71, 2, 3, 4, 5, 6itgcnlem 19673 . 2  |-  ( ph  ->  S. A B  _d x  =  ( ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) ) )  +  ( _i  x.  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  B ) ) ,  ( Im `  B ) ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) ) ) ) ) )
8 iblmbf 19651 . . . . . . 7  |-  ( ( x  e.  A  |->  B )  e.  L ^1 
->  ( x  e.  A  |->  B )  e. MblFn )
96, 8syl 16 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
109, 5mbfmptcl 19521 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
1110recld 11991 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
1210iblcn 19682 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L ^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L ^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L ^1 ) ) )
136, 12mpbid 202 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L ^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L ^1 ) )
1413simpld 446 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L ^1 )
1511, 14itgrevallem1 19678 . . 3  |-  ( ph  ->  S. A ( Re
`  B )  _d x  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  B ) ) ,  ( Re `  B ) ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  B )
) ,  -u (
Re `  B ) ,  0 ) ) ) ) )
1610imcld 11992 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
1713simprd 450 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L ^1 )
1816, 17itgrevallem1 19678 . . . 4  |-  ( ph  ->  S. A ( Im
`  B )  _d x  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  B ) ) ,  ( Im `  B ) ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) ) ) )
1918oveq2d 6089 . . 3  |-  ( ph  ->  ( _i  x.  S. A ( Im `  B )  _d x )  =  ( _i  x.  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) ) ) ) )
2015, 19oveq12d 6091 . 2  |-  ( ph  ->  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A
( Im `  B
)  _d x ) )  =  ( ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) ) )  +  ( _i  x.  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  B ) ) ,  ( Im `  B ) ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) ) ) ) ) )
217, 20eqtr4d 2470 1  |-  ( ph  ->  S. A B  _d x  =  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   ifcif 3731   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   RRcr 8981   0cc0 8982   _ici 8984    + caddc 8985    x. cmul 8987    <_ cle 9113    - cmin 9283   -ucneg 9284   Recre 11894   Imcim 11895  MblFncmbf 19498   S.2citg2 19500   L ^1cibl 19501   S.citg 19502
This theorem is referenced by:  itgre  19684  itgim  19685  itgneg  19687  itgconst  19702  itgadd  19708  itgmulc2  19717  itgaddnc  26255  itgmulc2nc  26263
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-ofr 6298  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-xadd 10703  df-ioo 10912  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472  df-xmet 16687  df-met 16688  df-ovol 19353  df-vol 19354  df-mbf 19504  df-itg1 19505  df-itg2 19506  df-ibl 19507  df-itg 19508  df-0p 19554
  Copyright terms: Public domain W3C validator