MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgconst Structured version   Unicode version

Theorem itgconst 19700
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
itgconst  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  S. A B  _d x  =  ( B  x.  ( vol `  A
) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem itgconst
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 recl 11905 . . . . . 6  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
213ad2ant3 980 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( Re `  B
)  e.  RR )
3 simplr 732 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  ( vol `  A )  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  /\  x  e.  A
)  ->  y  e.  RR )
4 fconstmpt 4913 . . . . . . . . 9  |-  ( A  X.  { y } )  =  ( x  e.  A  |->  y )
5 simpl1 960 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  A  e.  dom  vol )
6 simp2 958 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( vol `  A
)  e.  RR )
76adantr 452 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( vol `  A
)  e.  RR )
8 simpr 448 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  y  e.  RR )
98recnd 9104 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  y  e.  CC )
10 iblconst 19699 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  y  e.  CC )  ->  ( A  X.  {
y } )  e.  L ^1 )
115, 7, 9, 10syl3anc 1184 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( A  X.  { y } )  e.  L ^1 )
124, 11syl5eqelr 2520 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( x  e.  A  |->  y )  e.  L ^1 )
133, 12itgrevallem1 19676 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  S. A y  _d x  =  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
y ) ,  y ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u y ) ,  -u y ,  0 ) ) ) ) )
14 ifan 3770 . . . . . . . . . . . 12  |-  if ( ( x  e.  A  /\  0  <_  y ) ,  y ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  y ,  y ,  0 ) ,  0 )
1514mpteq2i 4284 . . . . . . . . . . 11  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  y ) ,  y ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
y ,  y ,  0 ) ,  0 ) )
1615fveq2i 5723 . . . . . . . . . 10  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
y ) ,  y ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
y ,  y ,  0 ) ,  0 ) ) )
17 0re 9081 . . . . . . . . . . . . 13  |-  0  e.  RR
18 ifcl 3767 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
y ,  y ,  0 )  e.  RR )
198, 17, 18sylancl 644 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  if ( 0  <_  y ,  y ,  0 )  e.  RR )
20 max1 10763 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  y  e.  RR )  ->  0  <_  if (
0  <_  y , 
y ,  0 ) )
2117, 8, 20sylancr 645 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  0  <_  if ( 0  <_  y ,  y ,  0 ) )
22 elrege0 10997 . . . . . . . . . . . 12  |-  ( if ( 0  <_  y ,  y ,  0 )  e.  ( 0 [,)  +oo )  <->  ( if ( 0  <_  y ,  y ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  y ,  y ,  0 ) ) )
2319, 21, 22sylanbrc 646 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  if ( 0  <_  y ,  y ,  0 )  e.  ( 0 [,)  +oo ) )
24 itg2const 19622 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  if ( 0  <_  y ,  y ,  0 )  e.  ( 0 [,)  +oo ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  y ,  y ,  0 ) ,  0 ) ) )  =  ( if ( 0  <_ 
y ,  y ,  0 )  x.  ( vol `  A ) ) )
255, 7, 23, 24syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
y ,  y ,  0 ) ,  0 ) ) )  =  ( if ( 0  <_  y ,  y ,  0 )  x.  ( vol `  A
) ) )
2616, 25syl5eq 2479 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
y ) ,  y ,  0 ) ) )  =  ( if ( 0  <_  y ,  y ,  0 )  x.  ( vol `  A ) ) )
27 ifan 3770 . . . . . . . . . . . 12  |-  if ( ( x  e.  A  /\  0  <_  -u y
) ,  -u y ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  -u y , 
-u y ,  0 ) ,  0 )
2827mpteq2i 4284 . . . . . . . . . . 11  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u y
) ,  -u y ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u y ,  -u y ,  0 ) ,  0 ) )
2928fveq2i 5723 . . . . . . . . . 10  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u y ) ,  -u y ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u y ,  -u y ,  0 ) ,  0 ) ) )
30 renegcl 9354 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  -u y  e.  RR )
3130adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  -u y  e.  RR )
32 ifcl 3767 . . . . . . . . . . . . 13  |-  ( (
-u y  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u y ,  -u y ,  0 )  e.  RR )
3331, 17, 32sylancl 644 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  if ( 0  <_  -u y ,  -u y ,  0 )  e.  RR )
34 max1 10763 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  -u y  e.  RR )  ->  0  <_  if ( 0  <_  -u y ,  -u y ,  0 ) )
3517, 31, 34sylancr 645 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  0  <_  if ( 0  <_  -u y ,  -u y ,  0 ) )
36 elrege0 10997 . . . . . . . . . . . 12  |-  ( if ( 0  <_  -u y ,  -u y ,  0 )  e.  ( 0 [,)  +oo )  <->  ( if ( 0  <_  -u y ,  -u y ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  -u y ,  -u y ,  0 ) ) )
3733, 35, 36sylanbrc 646 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  if ( 0  <_  -u y ,  -u y ,  0 )  e.  ( 0 [,) 
+oo ) )
38 itg2const 19622 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  if ( 0  <_  -u y ,  -u y ,  0 )  e.  ( 0 [,)  +oo ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u y ,  -u y ,  0 ) ,  0 ) ) )  =  ( if ( 0  <_  -u y ,  -u y ,  0 )  x.  ( vol `  A
) ) )
395, 7, 37, 38syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u y ,  -u y ,  0 ) ,  0 ) ) )  =  ( if ( 0  <_  -u y , 
-u y ,  0 )  x.  ( vol `  A ) ) )
4029, 39syl5eq 2479 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u y ) ,  -u y ,  0 ) ) )  =  ( if ( 0  <_  -u y ,  -u y ,  0 )  x.  ( vol `  A
) ) )
4126, 40oveq12d 6091 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
y ) ,  y ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u y ) ,  -u y ,  0 ) ) ) )  =  ( ( if ( 0  <_  y , 
y ,  0 )  x.  ( vol `  A
) )  -  ( if ( 0  <_  -u y ,  -u y ,  0 )  x.  ( vol `  A ) ) ) )
4219recnd 9104 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  if ( 0  <_  y ,  y ,  0 )  e.  CC )
4333recnd 9104 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  if ( 0  <_  -u y ,  -u y ,  0 )  e.  CC )
446recnd 9104 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( vol `  A
)  e.  CC )
4544adantr 452 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( vol `  A
)  e.  CC )
4642, 43, 45subdird 9480 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( ( if ( 0  <_  y ,  y ,  0 )  -  if ( 0  <_  -u y , 
-u y ,  0 ) )  x.  ( vol `  A ) )  =  ( ( if ( 0  <_  y ,  y ,  0 )  x.  ( vol `  A ) )  -  ( if ( 0  <_  -u y ,  -u y ,  0 )  x.  ( vol `  A
) ) ) )
47 max0sub 10772 . . . . . . . . . 10  |-  ( y  e.  RR  ->  ( if ( 0  <_  y ,  y ,  0 )  -  if ( 0  <_  -u y , 
-u y ,  0 ) )  =  y )
4847adantl 453 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( if ( 0  <_  y , 
y ,  0 )  -  if ( 0  <_  -u y ,  -u y ,  0 ) )  =  y )
4948oveq1d 6088 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( ( if ( 0  <_  y ,  y ,  0 )  -  if ( 0  <_  -u y , 
-u y ,  0 ) )  x.  ( vol `  A ) )  =  ( y  x.  ( vol `  A
) ) )
5041, 46, 493eqtr2rd 2474 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( y  x.  ( vol `  A
) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
y ) ,  y ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u y ) ,  -u y ,  0 ) ) ) ) )
5113, 50eqtr4d 2470 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  S. A y  _d x  =  ( y  x.  ( vol `  A ) ) )
5251ralrimiva 2781 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  A. y  e.  RR  S. A y  _d x  =  ( y  x.  ( vol `  A
) ) )
53 simpl 444 . . . . . . . 8  |-  ( ( y  =  ( Re
`  B )  /\  x  e.  A )  ->  y  =  ( Re
`  B ) )
5453itgeq2dv 19663 . . . . . . 7  |-  ( y  =  ( Re `  B )  ->  S. A y  _d x  =  S. A ( Re `  B )  _d x )
55 oveq1 6080 . . . . . . 7  |-  ( y  =  ( Re `  B )  ->  (
y  x.  ( vol `  A ) )  =  ( ( Re `  B )  x.  ( vol `  A ) ) )
5654, 55eqeq12d 2449 . . . . . 6  |-  ( y  =  ( Re `  B )  ->  ( S. A y  _d x  =  ( y  x.  ( vol `  A
) )  <->  S. A
( Re `  B
)  _d x  =  ( ( Re `  B )  x.  ( vol `  A ) ) ) )
5756rspcv 3040 . . . . 5  |-  ( ( Re `  B )  e.  RR  ->  ( A. y  e.  RR  S. A y  _d x  =  ( y  x.  ( vol `  A
) )  ->  S. A ( Re `  B )  _d x  =  ( ( Re
`  B )  x.  ( vol `  A
) ) ) )
582, 52, 57sylc 58 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  S. A ( Re
`  B )  _d x  =  ( ( Re `  B )  x.  ( vol `  A
) ) )
59 imcl 11906 . . . . . . . 8  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
60593ad2ant3 980 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( Im `  B
)  e.  RR )
61 simpl 444 . . . . . . . . . 10  |-  ( ( y  =  ( Im
`  B )  /\  x  e.  A )  ->  y  =  ( Im
`  B ) )
6261itgeq2dv 19663 . . . . . . . . 9  |-  ( y  =  ( Im `  B )  ->  S. A y  _d x  =  S. A ( Im `  B )  _d x )
63 oveq1 6080 . . . . . . . . 9  |-  ( y  =  ( Im `  B )  ->  (
y  x.  ( vol `  A ) )  =  ( ( Im `  B )  x.  ( vol `  A ) ) )
6462, 63eqeq12d 2449 . . . . . . . 8  |-  ( y  =  ( Im `  B )  ->  ( S. A y  _d x  =  ( y  x.  ( vol `  A
) )  <->  S. A
( Im `  B
)  _d x  =  ( ( Im `  B )  x.  ( vol `  A ) ) ) )
6564rspcv 3040 . . . . . . 7  |-  ( ( Im `  B )  e.  RR  ->  ( A. y  e.  RR  S. A y  _d x  =  ( y  x.  ( vol `  A
) )  ->  S. A ( Im `  B )  _d x  =  ( ( Im
`  B )  x.  ( vol `  A
) ) ) )
6660, 52, 65sylc 58 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  S. A ( Im
`  B )  _d x  =  ( ( Im `  B )  x.  ( vol `  A
) ) )
6766oveq2d 6089 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( _i  x.  S. A ( Im `  B )  _d x )  =  ( _i  x.  ( ( Im
`  B )  x.  ( vol `  A
) ) ) )
68 ax-icn 9039 . . . . . . 7  |-  _i  e.  CC
6968a1i 11 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  _i  e.  CC )
7060recnd 9104 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( Im `  B
)  e.  CC )
7169, 70, 44mulassd 9101 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  B ) )  x.  ( vol `  A ) )  =  ( _i  x.  (
( Im `  B
)  x.  ( vol `  A ) ) ) )
7267, 71eqtr4d 2470 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( _i  x.  S. A ( Im `  B )  _d x )  =  ( ( _i  x.  ( Im
`  B ) )  x.  ( vol `  A
) ) )
7358, 72oveq12d 6091 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A
( Im `  B
)  _d x ) )  =  ( ( ( Re `  B
)  x.  ( vol `  A ) )  +  ( ( _i  x.  ( Im `  B ) )  x.  ( vol `  A ) ) ) )
742recnd 9104 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( Re `  B
)  e.  CC )
75 mulcl 9064 . . . . 5  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
7668, 70, 75sylancr 645 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  B )
)  e.  CC )
7774, 76, 44adddird 9103 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) )  x.  ( vol `  A ) )  =  ( ( ( Re `  B )  x.  ( vol `  A
) )  +  ( ( _i  x.  (
Im `  B )
)  x.  ( vol `  A ) ) ) )
7873, 77eqtr4d 2470 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A
( Im `  B
)  _d x ) )  =  ( ( ( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) )  x.  ( vol `  A
) ) )
79 simpl3 962 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  x  e.  A
)  ->  B  e.  CC )
80 fconstmpt 4913 . . . 4  |-  ( A  X.  { B }
)  =  ( x  e.  A  |->  B )
81 iblconst 19699 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( A  X.  { B } )  e.  L ^1 )
8280, 81syl5eqelr 2520 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( x  e.  A  |->  B )  e.  L ^1 )
8379, 82itgcnval 19681 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  S. A B  _d x  =  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )
84 replim 11911 . . . 4  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
85843ad2ant3 980 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  B  =  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) ) )
8685oveq1d 6088 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( B  x.  ( vol `  A ) )  =  ( ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) )  x.  ( vol `  A ) ) )
8778, 83, 863eqtr4d 2477 1  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  S. A B  _d x  =  ( B  x.  ( vol `  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   ifcif 3731   {csn 3806   class class class wbr 4204    e. cmpt 4258    X. cxp 4868   dom cdm 4870   ` cfv 5446  (class class class)co 6073   CCcc 8978   RRcr 8979   0cc0 8980   _ici 8982    + caddc 8983    x. cmul 8985    +oocpnf 9107    <_ cle 9111    - cmin 9281   -ucneg 9282   [,)cico 10908   Recre 11892   Imcim 11893   volcvol 19350   S.2citg2 19498   L ^1cibl 19499   S.citg 19500
This theorem is referenced by:  ftc1lem4  19913  itgulm  20314  ftc1cnnclem  26241  wallispilem2  27746
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058  ax-addf 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-ofr 6298  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7469  df-card 7816  df-cda 8038  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-n0 10212  df-z 10273  df-uz 10479  df-q 10565  df-rp 10603  df-xadd 10701  df-ioo 10910  df-ico 10912  df-icc 10913  df-fz 11034  df-fzo 11126  df-fl 11192  df-mod 11241  df-seq 11314  df-exp 11373  df-hash 11609  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-clim 12272  df-sum 12470  df-xmet 16685  df-met 16686  df-ovol 19351  df-vol 19352  df-mbf 19502  df-itg1 19503  df-itg2 19504  df-ibl 19505  df-itg 19506  df-0p 19552
  Copyright terms: Public domain W3C validator