MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeqa Unicode version

Theorem itgeqa 19168
Description: Approximate equality of integrals. If  C ( x )  =  D ( x ) for almost all  x, then  S. B C ( x )  _d x  =  S. B D ( x )  _d x and one is integrable iff the other is. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgeqa.1  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  CC )
itgeqa.2  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  CC )
itgeqa.3  |-  ( ph  ->  A  C_  RR )
itgeqa.4  |-  ( ph  ->  ( vol * `  A )  =  0 )
itgeqa.5  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  =  D )
Assertion
Ref Expression
itgeqa  |-  ( ph  ->  ( ( ( x  e.  B  |->  C )  e.  L ^1  <->  ( x  e.  B  |->  D )  e.  L ^1 )  /\  S. B C  _d x  =  S. B D  _d x ) )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    C( x)    D( x)

Proof of Theorem itgeqa
Dummy variables  y 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgeqa.3 . . . . 5  |-  ( ph  ->  A  C_  RR )
2 itgeqa.4 . . . . 5  |-  ( ph  ->  ( vol * `  A )  =  0 )
3 itgeqa.5 . . . . 5  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  =  D )
4 itgeqa.1 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  CC )
5 itgeqa.2 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  CC )
61, 2, 3, 4, 5mbfeqa 18998 . . . 4  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  ( x  e.  B  |->  D )  e. MblFn ) )
7 ifan 3604 . . . . . . . . . 10  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
84adantlr 695 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  C  e.  CC )
9 elfzelz 10798 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
109ad2antlr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  k  e.  ZZ )
11 ax-icn 8796 . . . . . . . . . . . . . . . . . 18  |-  _i  e.  CC
12 ine0 9215 . . . . . . . . . . . . . . . . . 18  |-  _i  =/=  0
13 expclz 11128 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  e.  CC )
1411, 12, 13mp3an12 1267 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  (
_i ^ k )  e.  CC )
1510, 14syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  (
_i ^ k )  e.  CC )
16 expne0i 11134 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
1711, 12, 16mp3an12 1267 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
1810, 17syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  (
_i ^ k )  =/=  0 )
198, 15, 18divcld 9536 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  ( C  /  ( _i ^
k ) )  e.  CC )
2019recld 11679 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  e.  RR )
21 0re 8838 . . . . . . . . . . . . . 14  |-  0  e.  RR
22 ifcl 3601 . . . . . . . . . . . . . 14  |-  ( ( ( Re `  ( C  /  ( _i ^
k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
2320, 21, 22sylancl 643 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
2423rexrd 8881 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR* )
25 max1 10514 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( Re `  ( C  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
2621, 20, 25sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  0  <_  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )
27 elxrge0 10747 . . . . . . . . . . . 12  |-  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,]  +oo )  <->  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )
2824, 26, 27sylanbrc 645 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,]  +oo ) )
29 0xr 8878 . . . . . . . . . . . . 13  |-  0  e.  RR*
30 0le0 9827 . . . . . . . . . . . . 13  |-  0  <_  0
31 elxrge0 10747 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 [,] 
+oo )  <->  ( 0  e.  RR*  /\  0  <_  0 ) )
3229, 30, 31mpbir2an 886 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,]  +oo )
3332a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  -.  x  e.  B )  ->  0  e.  ( 0 [,]  +oo ) )
3428, 33ifclda 3592 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  e.  ( 0 [,] 
+oo ) )
357, 34syl5eqel 2367 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  e.  ( 0 [,]  +oo )
)
3635adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  e.  ( 0 [,]  +oo )
)
37 eqid 2283 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
3836, 37fmptd 5684 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) : RR --> ( 0 [,] 
+oo ) )
39 ifan 3604 . . . . . . . . . 10  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
405adantlr 695 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  D  e.  CC )
4140, 15, 18divcld 9536 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  ( D  /  ( _i ^
k ) )  e.  CC )
4241recld 11679 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  (
Re `  ( D  /  ( _i ^
k ) ) )  e.  RR )
43 ifcl 3601 . . . . . . . . . . . . . 14  |-  ( ( ( Re `  ( D  /  ( _i ^
k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
4442, 21, 43sylancl 643 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
4544rexrd 8881 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  RR* )
46 max1 10514 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( Re `  ( D  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) )
4721, 42, 46sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  0  <_  if ( 0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) )
48 elxrge0 10747 . . . . . . . . . . . 12  |-  ( if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,]  +oo )  <->  ( if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) ) )
4945, 47, 48sylanbrc 645 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,]  +oo ) )
5049, 33ifclda 3592 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  e.  ( 0 [,] 
+oo ) )
5139, 50syl5eqel 2367 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 )  e.  ( 0 [,]  +oo )
)
5251adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 )  e.  ( 0 [,]  +oo )
)
53 eqid 2283 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) )
5452, 53fmptd 5684 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) : RR --> ( 0 [,] 
+oo ) )
551adantr 451 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  A  C_  RR )
562adantr 451 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( vol * `  A )  =  0 )
57 simpll 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  ph )
58 simpr 447 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  x  e.  B )
59 eldifn 3299 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
6059ad2antlr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  -.  x  e.  A )
61 eldif 3162 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( B  \  A )  <->  ( x  e.  B  /\  -.  x  e.  A ) )
6258, 60, 61sylanbrc 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  x  e.  ( B  \  A
) )
6357, 62, 3syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  C  =  D )
6463oveq1d 5873 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  ( C  /  ( _i ^
k ) )  =  ( D  /  (
_i ^ k ) ) )
6564fveq2d 5529 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( D  /  (
_i ^ k ) ) ) )
6665ibllem 19119 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) )
67 eldifi 3298 . . . . . . . . . . . . . 14  |-  ( x  e.  ( RR  \  A )  ->  x  e.  RR )
6867adantl 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  x  e.  RR )
69 fvex 5539 . . . . . . . . . . . . . 14  |-  ( Re
`  ( C  / 
( _i ^ k
) ) )  e. 
_V
70 c0ex 8832 . . . . . . . . . . . . . 14  |-  0  e.  _V
7169, 70ifex 3623 . . . . . . . . . . . . 13  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  _V
7237fvmpt2 5608 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  e.  _V )  ->  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) `  x
)  =  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )
7368, 71, 72sylancl 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
74 fvex 5539 . . . . . . . . . . . . . 14  |-  ( Re
`  ( D  / 
( _i ^ k
) ) )  e. 
_V
7574, 70ifex 3623 . . . . . . . . . . . . 13  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  _V
7653fvmpt2 5608 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 )  e.  _V )  ->  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) ) `  x
)  =  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) )
7768, 75, 76sylancl 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) )
7866, 73, 773eqtr4d 2325 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  x ) )
7978ralrimiva 2626 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( RR  \  A ) ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x ) )
80 nfv 1605 . . . . . . . . . . 11  |-  F/ y ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )
81 nfmpt1 4109 . . . . . . . . . . . . 13  |-  F/_ x
( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
82 nfcv 2419 . . . . . . . . . . . . 13  |-  F/_ x
y
8381, 82nffv 5532 . . . . . . . . . . . 12  |-  F/_ x
( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )
84 nfmpt1 4109 . . . . . . . . . . . . 13  |-  F/_ x
( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) )
8584, 82nffv 5532 . . . . . . . . . . . 12  |-  F/_ x
( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )
8683, 85nfeq 2426 . . . . . . . . . . 11  |-  F/ x
( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )
87 fveq2 5525 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
88 fveq2 5525 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
8987, 88eqeq12d 2297 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )  <->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) ) )
9080, 86, 89cbvral 2760 . . . . . . . . . 10  |-  ( A. x  e.  ( RR  \  A ) ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  <->  A. y  e.  ( RR  \  A
) ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) `  y
)  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
9179, 90sylib 188 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  ( RR  \  A ) ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y ) )
9291r19.21bi 2641 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
9392adantlr 695 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  y  e.  ( RR  \  A
) )  ->  (
( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
9438, 54, 55, 56, 93itg2eqa 19100 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
9594eleq1d 2349 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )  e.  RR  <->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) )
9695ralbidva 2559 . . . 4  |-  ( ph  ->  ( A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR  <->  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) )
976, 96anbi12d 691 . . 3  |-  ( ph  ->  ( ( ( x  e.  B  |->  C )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )  <->  ( (
x  e.  B  |->  D )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
98 eqidd 2284 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
99 eqidd 2284 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
10098, 99, 4isibl2 19121 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e.  L ^1  <->  ( (
x  e.  B  |->  C )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
101 eqidd 2284 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )
102 eqidd 2284 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
Re `  ( D  /  ( _i ^
k ) ) )  =  ( Re `  ( D  /  (
_i ^ k ) ) ) )
103101, 102, 5isibl2 19121 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  D )  e.  L ^1  <->  ( (
x  e.  B  |->  D )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
10497, 100, 1033bitr4d 276 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e.  L ^1  <->  ( x  e.  B  |->  D )  e.  L ^1 ) )
10594oveq2d 5874 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
106105sumeq2dv 12176 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
107 eqid 2283 . . . 4  |-  ( Re
`  ( C  / 
( _i ^ k
) ) )  =  ( Re `  ( C  /  ( _i ^
k ) ) )
108107dfitg 19124 . . 3  |-  S. B C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
109 eqid 2283 . . . 4  |-  ( Re
`  ( D  / 
( _i ^ k
) ) )  =  ( Re `  ( D  /  ( _i ^
k ) ) )
110109dfitg 19124 . . 3  |-  S. B D  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
111106, 108, 1103eqtr4g 2340 . 2  |-  ( ph  ->  S. B C  _d x  =  S. B D  _d x )
112104, 111jca 518 1  |-  ( ph  ->  ( ( ( x  e.  B  |->  C )  e.  L ^1  <->  ( x  e.  B  |->  D )  e.  L ^1 )  /\  S. B C  _d x  =  S. B D  _d x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   _Vcvv 2788    \ cdif 3149    C_ wss 3152   ifcif 3565   class class class wbr 4023    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   _ici 8739    x. cmul 8742    +oocpnf 8864   RR*cxr 8866    <_ cle 8868    / cdiv 9423   3c3 9796   ZZcz 10024   [,]cicc 10659   ...cfz 10782   ^cexp 11104   Recre 11582   sum_csu 12158   vol
*covol 18822  MblFncmbf 18969   S.2citg2 18971   L ^1cibl 18972   S.citg 18973
This theorem is referenced by:  itgss3  19169
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-rest 13327  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-cmp 17114  df-ovol 18824  df-vol 18825  df-mbf 18975  df-itg1 18976  df-itg2 18977  df-ibl 18978  df-itg 18979
  Copyright terms: Public domain W3C validator