MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgle Unicode version

Theorem itgle 19180
Description: Monotonicity of an integral. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itgle.1  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
itgle.2  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L ^1 )
itgle.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
itgle.4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
itgle.5  |-  ( (
ph  /\  x  e.  A )  ->  B  <_  C )
Assertion
Ref Expression
itgle  |-  ( ph  ->  S. A B  _d x  <_  S. A C  _d x )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem itgle
StepHypRef Expression
1 itgle.1 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
2 itgle.3 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
32iblrelem 19161 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L ^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  e.  RR ) ) )
41, 3mpbid 201 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) )  e.  RR ) )
54simp2d 968 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )
6 itgle.2 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L ^1 )
7 itgle.4 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
87iblrelem 19161 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e.  L ^1  <->  ( (
x  e.  A  |->  C )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C ) ,  -u C ,  0 ) ) )  e.  RR ) ) )
96, 8mpbid 201 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C
) ,  -u C ,  0 ) ) )  e.  RR ) )
109simp3d 969 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C ) ,  -u C ,  0 ) ) )  e.  RR )
119simp2d 968 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  e.  RR )
124simp3d 969 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  e.  RR )
132ad2ant2r 727 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  B ) )  ->  B  e.  RR )
1413rexrd 8897 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  B ) )  ->  B  e.  RR* )
15 simprr 733 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  B ) )  ->  0  <_  B
)
16 elxrge0 10763 . . . . . . 7  |-  ( B  e.  ( 0 [,] 
+oo )  <->  ( B  e.  RR*  /\  0  <_  B ) )
1714, 15, 16sylanbrc 645 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  B ) )  ->  B  e.  ( 0 [,]  +oo )
)
18 0xr 8894 . . . . . . . 8  |-  0  e.  RR*
19 0le0 9843 . . . . . . . 8  |-  0  <_  0
20 elxrge0 10763 . . . . . . . 8  |-  ( 0  e.  ( 0 [,] 
+oo )  <->  ( 0  e.  RR*  /\  0  <_  0 ) )
2118, 19, 20mpbir2an 886 . . . . . . 7  |-  0  e.  ( 0 [,]  +oo )
2221a1i 10 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  ( x  e.  A  /\  0  <_  B ) )  ->  0  e.  ( 0 [,]  +oo ) )
2317, 22ifclda 3605 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  ( 0 [,]  +oo ) )
24 eqid 2296 . . . . 5  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )
2523, 24fmptd 5700 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
267ad2ant2r 727 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  C ) )  ->  C  e.  RR )
2726rexrd 8897 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  C ) )  ->  C  e.  RR* )
28 simprr 733 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  C ) )  ->  0  <_  C
)
29 elxrge0 10763 . . . . . . 7  |-  ( C  e.  ( 0 [,] 
+oo )  <->  ( C  e.  RR*  /\  0  <_  C ) )
3027, 28, 29sylanbrc 645 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  C ) )  ->  C  e.  ( 0 [,]  +oo )
)
3121a1i 10 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  ( x  e.  A  /\  0  <_  C ) )  ->  0  e.  ( 0 [,]  +oo ) )
3230, 31ifclda 3605 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  ( 0 [,]  +oo ) )
33 eqid 2296 . . . . 5  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
3432, 33fmptd 5700 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
35 0re 8854 . . . . . . . . . . . 12  |-  0  e.  RR
36 max1 10530 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  0  <_  if (
0  <_  C ,  C ,  0 ) )
3735, 7, 36sylancr 644 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  C ,  C , 
0 ) )
38 ifcl 3614 . . . . . . . . . . . . 13  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  C ,  C , 
0 )  e.  RR )
397, 35, 38sylancl 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  RR )
40 itgle.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  B  <_  C )
41 max2 10532 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  C  <_  if (
0  <_  C ,  C ,  0 ) )
4235, 7, 41sylancr 644 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  C  <_  if ( 0  <_  C ,  C , 
0 ) )
432, 7, 39, 40, 42letrd 8989 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  B  <_  if ( 0  <_  C ,  C , 
0 ) )
4435a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  0  e.  RR )
45 maxle 10535 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  B  e.  RR  /\  if ( 0  <_  C ,  C ,  0 )  e.  RR )  -> 
( if ( 0  <_  B ,  B ,  0 )  <_  if ( 0  <_  C ,  C ,  0 )  <-> 
( 0  <_  if ( 0  <_  C ,  C ,  0 )  /\  B  <_  if ( 0  <_  C ,  C ,  0 ) ) ) )
4644, 2, 39, 45syl3anc 1182 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  <_  if ( 0  <_  C ,  C ,  0 )  <->  ( 0  <_  if ( 0  <_  C ,  C ,  0 )  /\  B  <_  if ( 0  <_  C ,  C ,  0 ) ) ) )
4737, 43, 46mpbir2and 888 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  <_  if ( 0  <_  C ,  C ,  0 ) )
48 iftrue 3584 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 )  =  if ( 0  <_  B ,  B ,  0 ) )
4948adantl 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 )  =  if ( 0  <_  B ,  B ,  0 ) )
50 iftrue 3584 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  C ,  C , 
0 ) ,  0 )  =  if ( 0  <_  C ,  C ,  0 ) )
5150adantl 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  C ,  C , 
0 ) ,  0 )  =  if ( 0  <_  C ,  C ,  0 ) )
5247, 49, 513brtr4d 4069 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 )  <_  if (
x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 ) )
5352ex 423 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )  <_  if ( x  e.  A ,  if ( 0  <_  C ,  C , 
0 ) ,  0 ) ) )
5419a1i 10 . . . . . . . . 9  |-  ( -.  x  e.  A  -> 
0  <_  0 )
55 iffalse 3585 . . . . . . . . 9  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 )  =  0 )
56 iffalse 3585 . . . . . . . . 9  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  C ,  C , 
0 ) ,  0 )  =  0 )
5754, 55, 563brtr4d 4069 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 )  <_  if (
x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 ) )
5853, 57pm2.61d1 151 . . . . . . 7  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )  <_  if ( x  e.  A ,  if ( 0  <_  C ,  C , 
0 ) ,  0 ) )
59 ifan 3617 . . . . . . 7  |-  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )
60 ifan 3617 . . . . . . 7  |-  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 )
6158, 59, 603brtr4g 4071 . . . . . 6  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  <_  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
6261ralrimivw 2640 . . . . 5  |-  ( ph  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  <_  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
63 reex 8844 . . . . . . 7  |-  RR  e.  _V
6463a1i 10 . . . . . 6  |-  ( ph  ->  RR  e.  _V )
65 eqidd 2297 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )
66 eqidd 2297 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )
6764, 23, 32, 65, 66ofrfval2 6112 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  o R  <_ 
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  <->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  <_  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )
6862, 67mpbird 223 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  o R  <_  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )
69 itg2le 19110 . . . 4  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  o R  <_  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )
7025, 34, 68, 69syl3anc 1182 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )
717renegcld 9226 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  -u C  e.  RR )
7271ad2ant2r 727 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  -u C ) )  ->  -u C  e.  RR )
7372rexrd 8897 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  -u C ) )  ->  -u C  e.  RR* )
74 simprr 733 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  -u C ) )  ->  0  <_  -u C
)
75 elxrge0 10763 . . . . . . 7  |-  ( -u C  e.  ( 0 [,]  +oo )  <->  ( -u C  e.  RR*  /\  0  <_  -u C ) )
7673, 74, 75sylanbrc 645 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  -u C ) )  ->  -u C  e.  ( 0 [,]  +oo )
)
7721a1i 10 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  ( x  e.  A  /\  0  <_  -u C
) )  ->  0  e.  ( 0 [,]  +oo ) )
7876, 77ifclda 3605 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  -u C
) ,  -u C ,  0 )  e.  ( 0 [,]  +oo ) )
79 eqid 2296 . . . . 5  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C
) ,  -u C ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C ) , 
-u C ,  0 ) )
8078, 79fmptd 5700 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C ) ,  -u C ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
812renegcld 9226 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  RR )
8281ad2ant2r 727 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  -u B ) )  ->  -u B  e.  RR )
8382rexrd 8897 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  -u B ) )  ->  -u B  e.  RR* )
84 simprr 733 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  -u B ) )  ->  0  <_  -u B
)
85 elxrge0 10763 . . . . . . 7  |-  ( -u B  e.  ( 0 [,]  +oo )  <->  ( -u B  e.  RR*  /\  0  <_  -u B ) )
8683, 84, 85sylanbrc 645 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x  e.  A  /\  0  <_  -u B ) )  ->  -u B  e.  ( 0 [,]  +oo )
)
8721a1i 10 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  ( x  e.  A  /\  0  <_  -u B
) )  ->  0  e.  ( 0 [,]  +oo ) )
8886, 87ifclda 3605 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 )  e.  ( 0 [,]  +oo ) )
89 eqid 2296 . . . . 5  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) , 
-u B ,  0 ) )
9088, 89fmptd 5700 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
91 max1 10530 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  -u B  e.  RR )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
9235, 81, 91sylancr 644 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
93 ifcl 3614 . . . . . . . . . . . . 13  |-  ( (
-u B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
9481, 35, 93sylancl 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
952, 7lenegd 9367 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( B  <_  C  <->  -u C  <_  -u B ) )
9640, 95mpbid 201 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  -u C  <_ 
-u B )
97 max2 10532 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  -u B  e.  RR )  ->  -u B  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
9835, 81, 97sylancr 644 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  -u B  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
9971, 81, 94, 96, 98letrd 8989 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  -u C  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
100 maxle 10535 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  -u C  e.  RR  /\  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  <_  if ( 0  <_  -u B ,  -u B ,  0 )  <-> 
( 0  <_  if ( 0  <_  -u B ,  -u B ,  0 )  /\  -u C  <_  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
10144, 71, 94, 100syl3anc 1182 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  <_  if (
0  <_  -u B ,  -u B ,  0 )  <-> 
( 0  <_  if ( 0  <_  -u B ,  -u B ,  0 )  /\  -u C  <_  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
10292, 99, 101mpbir2and 888 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  <_  if (
0  <_  -u B ,  -u B ,  0 ) )
103 iftrue 3584 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u C ,  -u C ,  0 ) ,  0 )  =  if ( 0  <_  -u C ,  -u C ,  0 ) )
104103adantl 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  -u C ,  -u C ,  0 ) ,  0 )  =  if ( 0  <_  -u C ,  -u C ,  0 ) )
105 iftrue 3584 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 )  =  if ( 0  <_  -u B ,  -u B ,  0 ) )
106105adantl 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 )  =  if ( 0  <_  -u B ,  -u B ,  0 ) )
107102, 104, 1063brtr4d 4069 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  -u C ,  -u C ,  0 ) ,  0 )  <_  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) )
108107ex 423 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u C ,  -u C ,  0 ) ,  0 )  <_  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) )
109 iffalse 3585 . . . . . . . . 9  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u C ,  -u C ,  0 ) ,  0 )  =  0 )
110 iffalse 3585 . . . . . . . . 9  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 )  =  0 )
11154, 109, 1103brtr4d 4069 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u C ,  -u C ,  0 ) ,  0 )  <_  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) )
112108, 111pm2.61d1 151 . . . . . . 7  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  -u C ,  -u C ,  0 ) ,  0 )  <_  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) )
113 ifan 3617 . . . . . . 7  |-  if ( ( x  e.  A  /\  0  <_  -u C
) ,  -u C ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  -u C ,  -u C ,  0 ) ,  0 )
114 ifan 3617 . . . . . . 7  |-  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 )
115112, 113, 1143brtr4g 4071 . . . . . 6  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_ 
-u C ) , 
-u C ,  0 )  <_  if (
( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) )
116115ralrimivw 2640 . . . . 5  |-  ( ph  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  -u C ) ,  -u C ,  0 )  <_  if ( ( x  e.  A  /\  0  <_  -u B ) , 
-u B ,  0 ) )
117 eqidd 2297 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C ) ,  -u C ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C
) ,  -u C ,  0 ) ) )
118 eqidd 2297 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) )
11964, 78, 88, 117, 118ofrfval2 6112 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C ) , 
-u C ,  0 ) )  o R  <_  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) , 
-u B ,  0 ) )  <->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  -u C ) , 
-u C ,  0 )  <_  if (
( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) )
120116, 119mpbird 223 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C ) ,  -u C ,  0 ) )  o R  <_ 
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )
121 itg2le 19110 . . . 4  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C ) ,  -u C ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C ) ,  -u C ,  0 ) )  o R  <_ 
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C ) , 
-u C ,  0 ) ) )  <_ 
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) ) )
12280, 90, 120, 121syl3anc 1182 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C ) ,  -u C ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) , 
-u B ,  0 ) ) ) )
1235, 10, 11, 12, 70, 122le2subd 9407 . 2  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) ) )  <_ 
( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C ) ,  -u C ,  0 ) ) ) ) )
1242, 1itgrevallem1 19165 . 2  |-  ( ph  ->  S. A B  _d x  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) ) ) )
1257, 6itgrevallem1 19165 . 2  |-  ( ph  ->  S. A C  _d x  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u C
) ,  -u C ,  0 ) ) ) ) )
126123, 124, 1253brtr4d 4069 1  |-  ( ph  ->  S. A B  _d x  <_  S. A C  _d x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801   ifcif 3578   class class class wbr 4039    e. cmpt 4093   -->wf 5267   ` cfv 5271  (class class class)co 5874    o Rcofr 6093   RRcr 8752   0cc0 8753    +oocpnf 8880   RR*cxr 8882    <_ cle 8884    - cmin 9053   -ucneg 9054   [,]cicc 10675  MblFncmbf 18985   S.2citg2 18987   L ^1cibl 18988   S.citg 18989
This theorem is referenced by:  itgge0  19181  itgless  19187  itgabs  19205  itgulm  19800  itgabsnc  25020  wallispilem1  27917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-ofr 6095  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xadd 10469  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-xmet 16389  df-met 16390  df-ovol 18840  df-vol 18841  df-mbf 18991  df-itg1 18992  df-itg2 18993  df-ibl 18994  df-itg 18995  df-0p 19041
  Copyright terms: Public domain W3C validator