MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgmulc2lem1 Structured version   Unicode version

Theorem itgmulc2lem1 19716
Description: Lemma for itgmulc2 19718: positive real case. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgmulc2.1  |-  ( ph  ->  C  e.  CC )
itgmulc2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgmulc2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
itgmulc2.4  |-  ( ph  ->  C  e.  RR )
itgmulc2.5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
itgmulc2.6  |-  ( ph  ->  0  <_  C )
itgmulc2.7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
Assertion
Ref Expression
itgmulc2lem1  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Distinct variable groups:    x, A    x, C    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgmulc2lem1
StepHypRef Expression
1 itgmulc2.5 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
2 itgmulc2.7 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
3 elrege0 11000 . . . . . . . 8  |-  ( B  e.  ( 0 [,) 
+oo )  <->  ( B  e.  RR  /\  0  <_  B ) )
41, 2, 3sylanbrc 646 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  ( 0 [,)  +oo ) )
5 0re 9084 . . . . . . . . 9  |-  0  e.  RR
6 0le0 10074 . . . . . . . . 9  |-  0  <_  0
7 elrege0 11000 . . . . . . . . 9  |-  ( 0  e.  ( 0 [,) 
+oo )  <->  ( 0  e.  RR  /\  0  <_  0 ) )
85, 6, 7mpbir2an 887 . . . . . . . 8  |-  0  e.  ( 0 [,)  +oo )
98a1i 11 . . . . . . 7  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,)  +oo ) )
104, 9ifclda 3759 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  B , 
0 )  e.  ( 0 [,)  +oo )
)
1110adantr 452 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A ,  B ,  0 )  e.  ( 0 [,) 
+oo ) )
12 eqid 2436 . . . . 5  |-  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )
1311, 12fmptd 5886 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
14 itgmulc2.3 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
151, 2iblpos 19677 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L ^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) ) )
1614, 15mpbid 202 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) )
1716simprd 450 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )
18 itgmulc2.4 . . . . 5  |-  ( ph  ->  C  e.  RR )
19 itgmulc2.6 . . . . 5  |-  ( ph  ->  0  <_  C )
20 elrege0 11000 . . . . 5  |-  ( C  e.  ( 0 [,) 
+oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
2118, 19, 20sylanbrc 646 . . . 4  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
2213, 17, 21itg2mulc 19632 . . 3  |-  ( ph  ->  ( S.2 `  (
( RR  X.  { C } )  o F  x.  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )  =  ( C  x.  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) ) )
23 reex 9074 . . . . . . 7  |-  RR  e.  _V
2423a1i 11 . . . . . 6  |-  ( ph  ->  RR  e.  _V )
2518adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  C  e.  RR )
26 fconstmpt 4914 . . . . . . 7  |-  ( RR 
X.  { C }
)  =  ( x  e.  RR  |->  C )
2726a1i 11 . . . . . 6  |-  ( ph  ->  ( RR  X.  { C } )  =  ( x  e.  RR  |->  C ) )
28 eqidd 2437 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )
2924, 25, 11, 27, 28offval2 6315 . . . . 5  |-  ( ph  ->  ( ( RR  X.  { C } )  o F  x.  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  =  ( x  e.  RR  |->  ( C  x.  if ( x  e.  A ,  B ,  0 ) ) ) )
30 oveq2 6082 . . . . . . . 8  |-  ( if ( x  e.  A ,  B ,  0 )  =  B  ->  ( C  x.  if (
x  e.  A ,  B ,  0 ) )  =  ( C  x.  B ) )
31 oveq2 6082 . . . . . . . 8  |-  ( if ( x  e.  A ,  B ,  0 )  =  0  ->  ( C  x.  if (
x  e.  A ,  B ,  0 ) )  =  ( C  x.  0 ) )
3230, 31ifsb 3741 . . . . . . 7  |-  ( C  x.  if ( x  e.  A ,  B ,  0 ) )  =  if ( x  e.  A ,  ( C  x.  B ) ,  ( C  x.  0 ) )
33 itgmulc2.1 . . . . . . . . . 10  |-  ( ph  ->  C  e.  CC )
3433mul01d 9258 . . . . . . . . 9  |-  ( ph  ->  ( C  x.  0 )  =  0 )
3534adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( C  x.  0 )  =  0 )
3635ifeq2d 3747 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( C  x.  B
) ,  ( C  x.  0 ) )  =  if ( x  e.  A ,  ( C  x.  B ) ,  0 ) )
3732, 36syl5eq 2480 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( C  x.  if ( x  e.  A ,  B ,  0 ) )  =  if ( x  e.  A ,  ( C  x.  B ) ,  0 ) )
3837mpteq2dva 4288 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  ( C  x.  if ( x  e.  A ,  B ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( C  x.  B ) ,  0 ) ) )
3929, 38eqtrd 2468 . . . 4  |-  ( ph  ->  ( ( RR  X.  { C } )  o F  x.  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( C  x.  B ) ,  0 ) ) )
4039fveq2d 5725 . . 3  |-  ( ph  ->  ( S.2 `  (
( RR  X.  { C } )  o F  x.  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( C  x.  B
) ,  0 ) ) ) )
4122, 40eqtr3d 2470 . 2  |-  ( ph  ->  ( C  x.  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( C  x.  B
) ,  0 ) ) ) )
421, 14, 2itgposval 19680 . . 3  |-  ( ph  ->  S. A B  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
4342oveq2d 6090 . 2  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  ( C  x.  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) ) )
4418adantr 452 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
4544, 1remulcld 9109 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  e.  RR )
46 itgmulc2.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
4733, 46, 14iblmulc2 19715 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e.  L ^1 )
4819adantr 452 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  C )
4944, 1, 48, 2mulge0d 9596 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( C  x.  B
) )
5045, 47, 49itgposval 19680 . 2  |-  ( ph  ->  S. A ( C  x.  B )  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( C  x.  B ) ,  0 ) ) ) )
5141, 43, 503eqtr4d 2478 1  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2949   ifcif 3732   {csn 3807   class class class wbr 4205    e. cmpt 4259    X. cxp 4869   ` cfv 5447  (class class class)co 6074    o Fcof 6296   CCcc 8981   RRcr 8982   0cc0 8983    x. cmul 8988    +oocpnf 9110    <_ cle 9114   [,)cico 10911  MblFncmbf 19499   S.2citg2 19501   L ^1cibl 19502   S.citg 19503
This theorem is referenced by:  itgmulc2lem2  19717
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-inf2 7589  ax-cc 8308  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061  ax-addf 9062  ax-mulf 9063
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-iin 4089  df-disj 4176  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-of 6298  df-ofr 6299  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-2o 6718  df-oadd 6721  df-omul 6722  df-er 6898  df-map 7013  df-pm 7014  df-ixp 7057  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-fi 7409  df-sup 7439  df-oi 7472  df-card 7819  df-acn 7822  df-cda 8041  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-7 10056  df-8 10057  df-9 10058  df-10 10059  df-n0 10215  df-z 10276  df-dec 10376  df-uz 10482  df-q 10568  df-rp 10606  df-xneg 10703  df-xadd 10704  df-xmul 10705  df-ioo 10913  df-ioc 10914  df-ico 10915  df-icc 10916  df-fz 11037  df-fzo 11129  df-fl 11195  df-mod 11244  df-seq 11317  df-exp 11376  df-hash 11612  df-cj 11897  df-re 11898  df-im 11899  df-sqr 12033  df-abs 12034  df-clim 12275  df-rlim 12276  df-sum 12473  df-struct 13464  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-mulr 13536  df-starv 13537  df-sca 13538  df-vsca 13539  df-tset 13541  df-ple 13542  df-ds 13544  df-unif 13545  df-hom 13546  df-cco 13547  df-rest 13643  df-topn 13644  df-topgen 13660  df-pt 13661  df-prds 13664  df-xrs 13719  df-0g 13720  df-gsum 13721  df-qtop 13726  df-imas 13727  df-xps 13729  df-mre 13804  df-mrc 13805  df-acs 13807  df-mnd 14683  df-submnd 14732  df-mulg 14808  df-cntz 15109  df-cmn 15407  df-psmet 16687  df-xmet 16688  df-met 16689  df-bl 16690  df-mopn 16691  df-cnfld 16697  df-top 16956  df-bases 16958  df-topon 16959  df-topsp 16960  df-cn 17284  df-cnp 17285  df-cmp 17443  df-tx 17587  df-hmeo 17780  df-xms 18343  df-ms 18344  df-tms 18345  df-cncf 18901  df-ovol 19354  df-vol 19355  df-mbf 19505  df-itg1 19506  df-itg2 19507  df-ibl 19508  df-itg 19509  df-0p 19555
  Copyright terms: Public domain W3C validator