MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgmulc2lem2 Unicode version

Theorem itgmulc2lem2 19402
Description: Lemma for itgmulc2 19403: real case. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgmulc2.1  |-  ( ph  ->  C  e.  CC )
itgmulc2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgmulc2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
itgmulc2.4  |-  ( ph  ->  C  e.  RR )
itgmulc2.5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
Assertion
Ref Expression
itgmulc2lem2  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Distinct variable groups:    x, A    x, C    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgmulc2lem2
StepHypRef Expression
1 itgmulc2.4 . . . . . . 7  |-  ( ph  ->  C  e.  RR )
21adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
3 max0sub 10675 . . . . . 6  |-  ( C  e.  RR  ->  ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  =  C )
42, 3syl 15 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  =  C )
54oveq1d 5996 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  x.  B
)  =  ( C  x.  B ) )
6 0re 8985 . . . . . . . 8  |-  0  e.  RR
7 ifcl 3690 . . . . . . . 8  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  C ,  C , 
0 )  e.  RR )
81, 6, 7sylancl 643 . . . . . . 7  |-  ( ph  ->  if ( 0  <_  C ,  C , 
0 )  e.  RR )
98recnd 9008 . . . . . 6  |-  ( ph  ->  if ( 0  <_  C ,  C , 
0 )  e.  CC )
109adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  CC )
111renegcld 9357 . . . . . . . 8  |-  ( ph  -> 
-u C  e.  RR )
12 ifcl 3690 . . . . . . . 8  |-  ( (
-u C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  RR )
1311, 6, 12sylancl 643 . . . . . . 7  |-  ( ph  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  RR )
1413recnd 9008 . . . . . 6  |-  ( ph  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  CC )
1514adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  CC )
16 itgmulc2.5 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
1716recnd 9008 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
1810, 15, 17subdird 9383 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  x.  B
)  =  ( ( if ( 0  <_  C ,  C , 
0 )  x.  B
)  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B ) ) )
195, 18eqtr3d 2400 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  =  ( ( if ( 0  <_  C ,  C ,  0 )  x.  B )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B ) ) )
2019itgeq2dv 19351 . 2  |-  ( ph  ->  S. A ( C  x.  B )  _d x  =  S. A
( ( if ( 0  <_  C ,  C ,  0 )  x.  B )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B ) )  _d x )
218adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  RR )
2221, 16remulcld 9010 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  B )  e.  RR )
23 itgmulc2.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
24 itgmulc2.3 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
259, 23, 24iblmulc2 19400 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  C ,  C ,  0 )  x.  B ) )  e.  L ^1 )
2613adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  RR )
2726, 16remulcld 9010 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B )  e.  RR )
2814, 23, 24iblmulc2 19400 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B ) )  e.  L ^1 )
2922, 25, 27, 28itgsub 19395 . 2  |-  ( ph  ->  S. A ( ( if ( 0  <_  C ,  C , 
0 )  x.  B
)  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B ) )  _d x  =  ( S. A ( if ( 0  <_  C ,  C , 
0 )  x.  B
)  _d x  -  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B )  _d x ) )
30 ifcl 3690 . . . . . . . 8  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  B ,  B , 
0 )  e.  RR )
3116, 6, 30sylancl 643 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  RR )
3221, 31remulcld 9010 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  e.  RR )
3316iblre 19363 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L ^1  <->  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L ^1 
/\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L ^1 ) ) )
3424, 33mpbid 201 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L ^1  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L ^1 ) )
3534simpld 445 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e.  L ^1 )
369, 31, 35iblmulc2 19400 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B , 
0 ) ) )  e.  L ^1 )
3716renegcld 9357 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  RR )
38 ifcl 3690 . . . . . . . 8  |-  ( (
-u B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
3937, 6, 38sylancl 643 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
4021, 39remulcld 9010 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  RR )
4134simprd 449 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L ^1 )
429, 39, 41iblmulc2 19400 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  e.  L ^1 )
4332, 36, 40, 42itgsub 19395 . . . . 5  |-  ( ph  ->  S. A ( ( if ( 0  <_  C ,  C , 
0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  -  ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  _d x  =  ( S. A
( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B , 
0 ) )  _d x  -  S. A
( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x ) )
44 max0sub 10675 . . . . . . . . 9  |-  ( B  e.  RR  ->  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  =  B )
4516, 44syl 15 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  =  B )
4645oveq2d 5997 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  =  ( if ( 0  <_  C ,  C , 
0 )  x.  B
) )
4731recnd 9008 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  CC )
4839recnd 9008 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  CC )
4910, 47, 48subdid 9382 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  =  ( ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B , 
0 ) )  -  ( if ( 0  <_  C ,  C , 
0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
5046, 49eqtr3d 2400 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  B )  =  ( ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  -  ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
5150itgeq2dv 19351 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  C ,  C ,  0 )  x.  B )  _d x  =  S. A
( ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  -  ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  _d x )
5216, 24itgreval 19366 . . . . . . 7  |-  ( ph  ->  S. A B  _d x  =  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )
5352oveq2d 5997 . . . . . 6  |-  ( ph  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  S. A B  _d x )  =  ( if ( 0  <_  C ,  C , 
0 )  x.  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) ) )
5431, 35itgcl 19353 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  B ,  B ,  0 )  _d x  e.  CC )
5539, 41itgcl 19353 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  e.  CC )
569, 54, 55subdid 9382 . . . . . 6  |-  ( ph  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )  =  ( ( if ( 0  <_  C ,  C ,  0 )  x.  S. A if ( 0  <_  B ,  B ,  0 )  _d x )  -  ( if ( 0  <_  C ,  C , 
0 )  x.  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) ) )
57 max1 10666 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  0  <_  if (
0  <_  C ,  C ,  0 ) )
586, 1, 57sylancr 644 . . . . . . . 8  |-  ( ph  ->  0  <_  if (
0  <_  C ,  C ,  0 ) )
59 max1 10666 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  0  <_  if (
0  <_  B ,  B ,  0 ) )
606, 16, 59sylancr 644 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  B ,  B , 
0 ) )
619, 31, 35, 8, 31, 58, 60itgmulc2lem1 19401 . . . . . . 7  |-  ( ph  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  S. A if ( 0  <_  B ,  B ,  0 )  _d x )  =  S. A ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  _d x )
62 max1 10666 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  -u B  e.  RR )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
636, 37, 62sylancr 644 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
649, 39, 41, 8, 39, 58, 63itgmulc2lem1 19401 . . . . . . 7  |-  ( ph  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x )  =  S. A ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x )
6561, 64oveq12d 5999 . . . . . 6  |-  ( ph  ->  ( ( if ( 0  <_  C ,  C ,  0 )  x.  S. A if ( 0  <_  B ,  B ,  0 )  _d x )  -  ( if ( 0  <_  C ,  C , 
0 )  x.  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )  =  ( S. A ( if ( 0  <_  C ,  C , 
0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  _d x  -  S. A ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x ) )
6653, 56, 653eqtrd 2402 . . . . 5  |-  ( ph  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  S. A B  _d x )  =  ( S. A ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  _d x  -  S. A ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x ) )
6743, 51, 663eqtr4d 2408 . . . 4  |-  ( ph  ->  S. A ( if ( 0  <_  C ,  C ,  0 )  x.  B )  _d x  =  ( if ( 0  <_  C ,  C ,  0 )  x.  S. A B  _d x ) )
6826, 31remulcld 9010 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  e.  RR )
6914, 31, 35iblmulc2 19400 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) ) )  e.  L ^1 )
7026, 39remulcld 9010 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  RR )
7114, 39, 41iblmulc2 19400 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  e.  L ^1 )
7268, 69, 70, 71itgsub 19395 . . . . 5  |-  ( ph  ->  S. A ( ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B , 
0 ) )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  _d x  =  ( S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B , 
0 ) )  _d x  -  S. A
( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x ) )
7345oveq2d 5997 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  =  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B ) )
7415, 47, 48subdid 9382 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  =  ( ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
7573, 74eqtr3d 2400 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B )  =  ( ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
7675itgeq2dv 19351 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B )  _d x  =  S. A ( ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  _d x )
7752oveq2d 5997 . . . . . 6  |-  ( ph  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A B  _d x )  =  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) ) )
7814, 54, 55subdid 9382 . . . . . 6  |-  ( ph  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )  =  ( ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A if ( 0  <_  B ,  B ,  0 )  _d x )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) ) )
79 max1 10666 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  -u C  e.  RR )  ->  0  <_  if ( 0  <_  -u C ,  -u C ,  0 ) )
806, 11, 79sylancr 644 . . . . . . . 8  |-  ( ph  ->  0  <_  if (
0  <_  -u C ,  -u C ,  0 ) )
8114, 31, 35, 13, 31, 80, 60itgmulc2lem1 19401 . . . . . . 7  |-  ( ph  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A if ( 0  <_  B ,  B ,  0 )  _d x )  =  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  _d x )
8214, 39, 41, 13, 39, 80, 63itgmulc2lem1 19401 . . . . . . 7  |-  ( ph  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x )  =  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x )
8381, 82oveq12d 5999 . . . . . 6  |-  ( ph  ->  ( ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A if ( 0  <_  B ,  B ,  0 )  _d x )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )  =  ( S. A
( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  _d x  -  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x ) )
8477, 78, 833eqtrd 2402 . . . . 5  |-  ( ph  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A B  _d x )  =  ( S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B , 
0 ) )  _d x  -  S. A
( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x ) )
8572, 76, 843eqtr4d 2408 . . . 4  |-  ( ph  ->  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B )  _d x  =  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A B  _d x ) )
8667, 85oveq12d 5999 . . 3  |-  ( ph  ->  ( S. A ( if ( 0  <_  C ,  C , 
0 )  x.  B
)  _d x  -  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B )  _d x )  =  ( ( if ( 0  <_  C ,  C ,  0 )  x.  S. A B  _d x )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A B  _d x ) ) )
8723, 24itgcl 19353 . . . 4  |-  ( ph  ->  S. A B  _d x  e.  CC )
889, 14, 87subdird 9383 . . 3  |-  ( ph  ->  ( ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  x.  S. A B  _d x )  =  ( ( if ( 0  <_  C ,  C ,  0 )  x.  S. A B  _d x )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A B  _d x ) ) )
891, 3syl 15 . . . 4  |-  ( ph  ->  ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  =  C )
9089oveq1d 5996 . . 3  |-  ( ph  ->  ( ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  x.  S. A B  _d x )  =  ( C  x.  S. A B  _d x
) )
9186, 88, 903eqtr2d 2404 . 2  |-  ( ph  ->  ( S. A ( if ( 0  <_  C ,  C , 
0 )  x.  B
)  _d x  -  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B )  _d x )  =  ( C  x.  S. A B  _d x ) )
9220, 29, 913eqtrrd 2403 1  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1647    e. wcel 1715   ifcif 3654   class class class wbr 4125    e. cmpt 4179  (class class class)co 5981   CCcc 8882   RRcr 8883   0cc0 8884    x. cmul 8889    <_ cle 9015    - cmin 9184   -ucneg 9185   L ^1cibl 19187   S.citg 19188
This theorem is referenced by:  itgmulc2  19403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cc 8208  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962  ax-addf 8963  ax-mulf 8964
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-disj 4096  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-ofr 6206  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-omul 6626  df-er 6802  df-map 6917  df-pm 6918  df-ixp 6961  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-fi 7312  df-sup 7341  df-oi 7372  df-card 7719  df-acn 7722  df-cda 7941  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-q 10468  df-rp 10506  df-xneg 10603  df-xadd 10604  df-xmul 10605  df-ioo 10813  df-ioc 10814  df-ico 10815  df-icc 10816  df-fz 10936  df-fzo 11026  df-fl 11089  df-mod 11138  df-seq 11211  df-exp 11270  df-hash 11506  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-clim 12169  df-rlim 12170  df-sum 12367  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-sets 13362  df-ress 13363  df-plusg 13429  df-mulr 13430  df-starv 13431  df-sca 13432  df-vsca 13433  df-tset 13435  df-ple 13436  df-ds 13438  df-unif 13439  df-hom 13440  df-cco 13441  df-rest 13537  df-topn 13538  df-topgen 13554  df-pt 13555  df-prds 13558  df-xrs 13613  df-0g 13614  df-gsum 13615  df-qtop 13620  df-imas 13621  df-xps 13623  df-mre 13698  df-mrc 13699  df-acs 13701  df-mnd 14577  df-submnd 14626  df-mulg 14702  df-cntz 15003  df-cmn 15301  df-xmet 16586  df-met 16587  df-bl 16588  df-mopn 16589  df-cnfld 16594  df-top 16853  df-bases 16855  df-topon 16856  df-topsp 16857  df-cn 17174  df-cnp 17175  df-cmp 17331  df-tx 17474  df-hmeo 17663  df-xms 18098  df-ms 18099  df-tms 18100  df-cncf 18596  df-ovol 19039  df-vol 19040  df-mbf 19190  df-itg1 19191  df-itg2 19192  df-ibl 19193  df-itg 19194  df-0p 19240
  Copyright terms: Public domain W3C validator