Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsinexp Structured version   Unicode version

Theorem itgsinexp 27725
Description: A recursive formula for the integral of sin^N on the interval (0,π) .

(Contributed by Glauco Siliprandi, 29-Jun-2017.)

Hypotheses
Ref Expression
itgsinexp.1  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
itgsinexp.2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
Assertion
Ref Expression
itgsinexp  |-  ( ph  ->  ( I `  N
)  =  ( ( ( N  -  1 )  /  N )  x.  ( I `  ( N  -  2
) ) ) )
Distinct variable groups:    x, n, N    ph, n, x
Allowed substitution hints:    I( x, n)

Proof of Theorem itgsinexp
StepHypRef Expression
1 itgsinexp.2 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
2 eluzelz 10496 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
3 zcn 10287 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  CC )
41, 2, 33syl 19 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
5 ax-1cn 9048 . . . . . . . 8  |-  1  e.  CC
65a1i 11 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
74, 6npcand 9415 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
87eqcomd 2441 . . . . 5  |-  ( ph  ->  N  =  ( ( N  -  1 )  +  1 ) )
98oveq1d 6096 . . . 4  |-  ( ph  ->  ( N  x.  (
I `  N )
)  =  ( ( ( N  -  1 )  +  1 )  x.  ( I `  N ) ) )
10 uz2m1nn 10550 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  e.  NN )
111, 10syl 16 . . . . . . 7  |-  ( ph  ->  ( N  -  1 )  e.  NN )
1211nncnd 10016 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  CC )
13 itgsinexp.1 . . . . . . . . 9  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
1413a1i 11 . . . . . . . 8  |-  ( ph  ->  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x
) ^ n )  _d x ) )
15 oveq2 6089 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( sin `  x
) ^ n )  =  ( ( sin `  x ) ^ N
) )
1615ad2antlr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  n  =  N )  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ n )  =  ( ( sin `  x ) ^ N
) )
1716itgeq2dv 19673 . . . . . . . 8  |-  ( (
ph  /\  n  =  N )  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x )
18 2cn 10070 . . . . . . . . . . 11  |-  2  e.  CC
1918a1i 11 . . . . . . . . . 10  |-  ( ph  ->  2  e.  CC )
20 npcan 9314 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  2  e.  CC )  ->  ( ( N  - 
2 )  +  2 )  =  N )
2120eqcomd 2441 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  2  e.  CC )  ->  N  =  ( ( N  -  2 )  +  2 ) )
224, 19, 21syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  N  =  ( ( N  -  2 )  +  2 ) )
23 uznn0sub 10517 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  2 )  e. 
NN0 )
241, 23syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  2 )  e.  NN0 )
25 2nn0 10238 . . . . . . . . . . 11  |-  2  e.  NN0
2625a1i 11 . . . . . . . . . 10  |-  ( ph  ->  2  e.  NN0 )
2724, 26nn0addcld 10278 . . . . . . . . 9  |-  ( ph  ->  ( ( N  - 
2 )  +  2 )  e.  NN0 )
2822, 27eqeltrd 2510 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
29 itgex 19662 . . . . . . . . 9  |-  S. ( 0 (,) pi ) ( ( sin `  x
) ^ N )  _d x  e.  _V
3029a1i 11 . . . . . . . 8  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x  e.  _V )
3114, 17, 28, 30fvmptd 5810 . . . . . . 7  |-  ( ph  ->  ( I `  N
)  =  S. ( 0 (,) pi ) ( ( sin `  x
) ^ N )  _d x )
32 ioossre 10972 . . . . . . . . . . . . 13  |-  ( 0 (,) pi )  C_  RR
33 ax-resscn 9047 . . . . . . . . . . . . 13  |-  RR  C_  CC
3432, 33sstri 3357 . . . . . . . . . . . 12  |-  ( 0 (,) pi )  C_  CC
3534sseli 3344 . . . . . . . . . . 11  |-  ( x  e.  ( 0 (,) pi )  ->  x  e.  CC )
3635sincld 12731 . . . . . . . . . 10  |-  ( x  e.  ( 0 (,) pi )  ->  ( sin `  x )  e.  CC )
3736adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( sin `  x )  e.  CC )
3828adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  N  e.  NN0 )
3937, 38expcld 11523 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ N )  e.  CC )
40 ioossicc 10996 . . . . . . . . . 10  |-  ( 0 (,) pi )  C_  ( 0 [,] pi )
4140a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 0 (,) pi )  C_  ( 0 [,] pi ) )
42 ioombl 19459 . . . . . . . . . 10  |-  ( 0 (,) pi )  e. 
dom  vol
4342a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 0 (,) pi )  e.  dom  vol )
44 0re 9091 . . . . . . . . . . . . . . 15  |-  0  e.  RR
45 pire 20372 . . . . . . . . . . . . . . 15  |-  pi  e.  RR
46 iccssre 10992 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  pi  e.  RR )  -> 
( 0 [,] pi )  C_  RR )
4744, 45, 46mp2an 654 . . . . . . . . . . . . . 14  |-  ( 0 [,] pi )  C_  RR
4847, 33sstri 3357 . . . . . . . . . . . . 13  |-  ( 0 [,] pi )  C_  CC
4948sseli 3344 . . . . . . . . . . . 12  |-  ( x  e.  ( 0 [,] pi )  ->  x  e.  CC )
5049sincld 12731 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,] pi )  ->  ( sin `  x )  e.  CC )
5150adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( sin `  x )  e.  CC )
5228adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  N  e.  NN0 )
5351, 52expcld 11523 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ N )  e.  CC )
5444a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
5545a1i 11 . . . . . . . . . 10  |-  ( ph  ->  pi  e.  RR )
5649adantl 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  x  e.  CC )
57 eqid 2436 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  |->  ( ( sin `  x ) ^ N ) )  =  ( x  e.  CC  |->  ( ( sin `  x ) ^ N
) )
5857fvmpt2 5812 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( ( sin `  x
) ^ N )  e.  CC )  -> 
( ( x  e.  CC  |->  ( ( sin `  x ) ^ N
) ) `  x
)  =  ( ( sin `  x ) ^ N ) )
5956, 53, 58syl2anc 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( x  e.  CC  |->  ( ( sin `  x
) ^ N ) ) `  x )  =  ( ( sin `  x ) ^ N
) )
6059eqcomd 2441 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ N )  =  ( ( x  e.  CC  |->  ( ( sin `  x ) ^ N ) ) `
 x ) )
6160mpteq2dva 4295 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  =  ( x  e.  ( 0 [,] pi )  |->  ( ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) ) `  x ) ) )
62 nfmpt1 4298 . . . . . . . . . . . 12  |-  F/_ x
( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )
63 nfcv 2572 . . . . . . . . . . . . 13  |-  F/_ x sin
64 sincn 20360 . . . . . . . . . . . . . 14  |-  sin  e.  ( CC -cn-> CC )
6564a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  sin  e.  ( CC
-cn-> CC ) )
6663, 65, 28expcnfg 27702 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )  e.  ( CC
-cn-> CC ) )
6748a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0 [,] pi )  C_  CC )
6862, 66, 67cncfmptss 27693 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( x  e.  CC  |->  ( ( sin `  x ) ^ N
) ) `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
6961, 68eqeltrd 2510 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )
70 cniccibl 19732 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  (
x  e.  ( 0 [,] pi )  |->  ( ( sin `  x
) ^ N ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )  -> 
( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  L ^1 )
7154, 55, 69, 70syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  L ^1 )
7241, 43, 53, 71iblss 19696 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  L ^1 )
7339, 72itgcl 19675 . . . . . . 7  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x  e.  CC )
7431, 73eqeltrd 2510 . . . . . 6  |-  ( ph  ->  ( I `  N
)  e.  CC )
7512, 6, 74adddird 9113 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 )  x.  (
I `  N )
)  =  ( ( ( N  -  1 )  x.  ( I `
 N ) )  +  ( 1  x.  ( I `  N
) ) ) )
7674mulid2d 9106 . . . . . 6  |-  ( ph  ->  ( 1  x.  (
I `  N )
)  =  ( I `
 N ) )
7776oveq2d 6097 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  x.  ( I `  N
) )  +  ( 1  x.  ( I `
 N ) ) )  =  ( ( ( N  -  1 )  x.  ( I `
 N ) )  +  ( I `  N ) ) )
7875, 77eqtrd 2468 . . . 4  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 )  x.  (
I `  N )
)  =  ( ( ( N  -  1 )  x.  ( I `
 N ) )  +  ( I `  N ) ) )
79 eluz2b2 10548 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
801, 79sylib 189 . . . . . . . . . . 11  |-  ( ph  ->  ( N  e.  NN  /\  1  <  N ) )
8180simpld 446 . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN )
82 expm1t 11408 . . . . . . . . . 10  |-  ( ( ( sin `  x
)  e.  CC  /\  N  e.  NN )  ->  ( ( sin `  x
) ^ N )  =  ( ( ( sin `  x ) ^ ( N  - 
1 ) )  x.  ( sin `  x
) ) )
8336, 81, 82syl2anr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ N )  =  ( ( ( sin `  x ) ^ ( N  - 
1 ) )  x.  ( sin `  x
) ) )
8483itgeq2dv 19673 . . . . . . . 8  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x  =  S. ( 0 (,) pi ) ( ( ( sin `  x ) ^ ( N  -  1 ) )  x.  ( sin `  x ) )  _d x )
85 eqid 2436 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  =  ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  -  1 ) ) )
86 eqid 2436 . . . . . . . . . 10  |-  ( x  e.  CC  |->  -u ( cos `  x ) )  =  ( x  e.  CC  |->  -u ( cos `  x
) )
87 eqid 2436 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( ( N  -  1 )  x.  ( ( sin `  x ) ^ ( ( N  -  1 )  - 
1 ) ) )  x.  ( cos `  x
) ) )  =  ( x  e.  CC  |->  ( ( ( N  -  1 )  x.  ( ( sin `  x
) ^ ( ( N  -  1 )  -  1 ) ) )  x.  ( cos `  x ) ) )
88 eqid 2436 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( ( sin `  x
) ^ ( N  -  1 ) )  x.  ( sin `  x
) ) )  =  ( x  e.  CC  |->  ( ( ( sin `  x ) ^ ( N  -  1 ) )  x.  ( sin `  x ) ) )
89 eqid 2436 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( ( ( N  - 
1 )  x.  (
( sin `  x
) ^ ( ( N  -  1 )  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )  =  ( x  e.  CC  |->  ( ( ( ( N  -  1 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )
90 eqid 2436 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) ) )  =  ( x  e.  CC  |->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( ( N  -  1 )  - 
1 ) ) ) )
9185, 86, 87, 88, 89, 90, 11itgsinexplem1 27724 . . . . . . . . 9  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ ( N  -  1 ) )  x.  ( sin `  x
) )  _d x  =  ( ( N  -  1 )  x.  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) )  _d x ) )
924, 6, 6subsub4d 9442 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( N  - 
1 )  -  1 )  =  ( N  -  ( 1  +  1 ) ) )
93 1p1e2 10094 . . . . . . . . . . . . . . . . 17  |-  ( 1  +  1 )  =  2
9493a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  +  1 )  =  2 )
9594oveq2d 6097 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N  -  (
1  +  1 ) )  =  ( N  -  2 ) )
9692, 95eqtrd 2468 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( N  - 
1 )  -  1 )  =  ( N  -  2 ) )
9796adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( N  -  1 )  -  1 )  =  ( N  - 
2 ) )
9897oveq2d 6097 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( ( N  -  1 )  -  1 ) )  =  ( ( sin `  x ) ^ ( N  -  2 ) ) )
9998oveq2d 6097 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) )  =  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) ) )
10099itgeq2dv 19673 . . . . . . . . . 10  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) )  _d x  =  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x )
101100oveq2d 6097 . . . . . . . . 9  |-  ( ph  ->  ( ( N  - 
1 )  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( ( N  -  1 )  -  1 ) ) )  _d x )  =  ( ( N  -  1 )  x.  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x ) )
102 sincossq 12777 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
( ( sin `  x
) ^ 2 )  +  ( ( cos `  x ) ^ 2 ) )  =  1 )
1035a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  1  e.  CC )
104 sincl 12727 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  ( sin `  x )  e.  CC )
105104sqcld 11521 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
( sin `  x
) ^ 2 )  e.  CC )
106 coscl 12728 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  ( cos `  x )  e.  CC )
107106sqcld 11521 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
( cos `  x
) ^ 2 )  e.  CC )
108103, 105, 107subaddd 9429 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
( 1  -  (
( sin `  x
) ^ 2 ) )  =  ( ( cos `  x ) ^ 2 )  <->  ( (
( sin `  x
) ^ 2 )  +  ( ( cos `  x ) ^ 2 ) )  =  1 ) )
109102, 108mpbird 224 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
1  -  ( ( sin `  x ) ^ 2 ) )  =  ( ( cos `  x ) ^ 2 ) )
110109eqcomd 2441 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
( cos `  x
) ^ 2 )  =  ( 1  -  ( ( sin `  x
) ^ 2 ) ) )
11135, 110syl 16 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 0 (,) pi )  ->  (
( cos `  x
) ^ 2 )  =  ( 1  -  ( ( sin `  x
) ^ 2 ) ) )
112111oveq1d 6096 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0 (,) pi )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  =  ( ( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) ) )
113112adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  =  ( ( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) ) )
114113itgeq2dv 19673 . . . . . . . . . . 11  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x  =  S. ( 0 (,) pi ) ( ( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  _d x )
1155a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  1  e.  CC )
11636sqcld 11521 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0 (,) pi )  ->  (
( sin `  x
) ^ 2 )  e.  CC )
117116adantl 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ 2 )  e.  CC )
11896eqcomd 2441 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( N  -  2 )  =  ( ( N  -  1 )  -  1 ) )
119 nnm1nn0 10261 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  -  1 )  e.  NN  ->  (
( N  -  1 )  -  1 )  e.  NN0 )
12011, 119syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( N  - 
1 )  -  1 )  e.  NN0 )
121118, 120eqeltrd 2510 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( N  -  2 )  e.  NN0 )
122121adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( N  -  2 )  e.  NN0 )
12337, 122expcld 11523 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( N  -  2 ) )  e.  CC )
124115, 117, 123subdird 9490 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  =  ( ( 1  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  -  (
( ( sin `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) ) ) )
125123mulid2d 9106 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
1  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  =  ( ( sin `  x ) ^ ( N  -  2 ) ) )
12625a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  2  e.  NN0 )
12737, 122, 126expaddd 11525 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( 2  +  ( N  - 
2 ) ) )  =  ( ( ( sin `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  2 ) ) ) )
12819, 4pncan3d 9414 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  +  ( N  -  2 ) )  =  N )
129128oveq2d 6097 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( sin `  x
) ^ ( 2  +  ( N  - 
2 ) ) )  =  ( ( sin `  x ) ^ N
) )
130129adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( 2  +  ( N  - 
2 ) ) )  =  ( ( sin `  x ) ^ N
) )
131127, 130eqtr3d 2470 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( sin `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  =  ( ( sin `  x
) ^ N ) )
132125, 131oveq12d 6099 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( 1  x.  (
( sin `  x
) ^ ( N  -  2 ) ) )  -  ( ( ( sin `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) ) )  =  ( ( ( sin `  x ) ^ ( N  -  2 ) )  -  ( ( sin `  x ) ^ N ) ) )
133124, 132eqtrd 2468 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  =  ( ( ( sin `  x ) ^ ( N  - 
2 ) )  -  ( ( sin `  x
) ^ N ) ) )
134133itgeq2dv 19673 . . . . . . . . . . 11  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( 1  -  ( ( sin `  x ) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x  =  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ ( N  -  2 ) )  -  ( ( sin `  x ) ^ N
) )  _d x )
135121adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( N  -  2 )  e.  NN0 )
13651, 135expcld 11523 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ ( N  -  2 ) )  e.  CC )
137 eqid 2436 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  =  ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  -  2 ) ) )
138137fvmpt2 5812 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( ( sin `  x
) ^ ( N  -  2 ) )  e.  CC )  -> 
( ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  -  2 ) ) ) `  x
)  =  ( ( sin `  x ) ^ ( N  - 
2 ) ) )
13956, 136, 138syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( x  e.  CC  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) ) `  x )  =  ( ( sin `  x ) ^ ( N  -  2 ) ) )
140139eqcomd 2441 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ ( N  -  2 ) )  =  ( ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  - 
2 ) ) ) `
 x ) )
141140mpteq2dva 4295 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  =  ( x  e.  ( 0 [,] pi )  |->  ( ( x  e.  CC  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) ) `  x ) ) )
142 nfmpt1 4298 . . . . . . . . . . . . . . . 16  |-  F/_ x
( x  e.  CC  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) )
14363, 65, 121expcnfg 27702 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  CC  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  ( CC
-cn-> CC ) )
144142, 143, 67cncfmptss 27693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  -  2 ) ) ) `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
145141, 144eqeltrd 2510 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )
146 cniccibl 19732 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  (
x  e.  ( 0 [,] pi )  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )  -> 
( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  L ^1 )
14754, 55, 145, 146syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  L ^1 )
14841, 43, 136, 147iblss 19696 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  L ^1 )
149123, 148, 39, 72itgsub 19717 . . . . . . . . . . 11  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ ( N  -  2 ) )  -  ( ( sin `  x ) ^ N
) )  _d x  =  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) )
150114, 134, 1493eqtrd 2472 . . . . . . . . . 10  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x  =  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) )
151150oveq2d 6097 . . . . . . . . 9  |-  ( ph  ->  ( ( N  - 
1 )  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  2 ) ) )  _d x )  =  ( ( N  -  1 )  x.  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) ) )
15291, 101, 1513eqtrd 2472 . . . . . . . 8  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ ( N  -  1 ) )  x.  ( sin `  x
) )  _d x  =  ( ( N  -  1 )  x.  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) ) )
15331, 84, 1523eqtrd 2472 . . . . . . 7  |-  ( ph  ->  ( I `  N
)  =  ( ( N  -  1 )  x.  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) ) )
154 oveq2 6089 . . . . . . . . . . . . 13  |-  ( n  =  ( N  - 
2 )  ->  (
( sin `  x
) ^ n )  =  ( ( sin `  x ) ^ ( N  -  2 ) ) )
155154adantr 452 . . . . . . . . . . . 12  |-  ( ( n  =  ( N  -  2 )  /\  x  e.  ( 0 (,) pi ) )  ->  ( ( sin `  x ) ^ n
)  =  ( ( sin `  x ) ^ ( N  - 
2 ) ) )
156155itgeq2dv 19673 . . . . . . . . . . 11  |-  ( n  =  ( N  - 
2 )  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  - 
2 ) )  _d x )
157156adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  n  =  ( N  -  2
) )  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  - 
2 ) )  _d x )
158 itgex 19662 . . . . . . . . . . 11  |-  S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  e.  _V
159158a1i 11 . . . . . . . . . 10  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  - 
2 ) )  _d x  e.  _V )
16014, 157, 121, 159fvmptd 5810 . . . . . . . . 9  |-  ( ph  ->  ( I `  ( N  -  2 ) )  =  S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x )
161160, 31oveq12d 6099 . . . . . . . 8  |-  ( ph  ->  ( ( I `  ( N  -  2
) )  -  (
I `  N )
)  =  ( S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) )
162161oveq2d 6097 . . . . . . 7  |-  ( ph  ->  ( ( N  - 
1 )  x.  (
( I `  ( N  -  2 ) )  -  ( I `
 N ) ) )  =  ( ( N  -  1 )  x.  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) ) )
163123, 148itgcl 19675 . . . . . . . . 9  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  - 
2 ) )  _d x  e.  CC )
164160, 163eqeltrd 2510 . . . . . . . 8  |-  ( ph  ->  ( I `  ( N  -  2 ) )  e.  CC )
16512, 164, 74subdid 9489 . . . . . . 7  |-  ( ph  ->  ( ( N  - 
1 )  x.  (
( I `  ( N  -  2 ) )  -  ( I `
 N ) ) )  =  ( ( ( N  -  1 )  x.  ( I `
 ( N  - 
2 ) ) )  -  ( ( N  -  1 )  x.  ( I `  N
) ) ) )
166153, 162, 1653eqtr2d 2474 . . . . . 6  |-  ( ph  ->  ( I `  N
)  =  ( ( ( N  -  1 )  x.  ( I `
 ( N  - 
2 ) ) )  -  ( ( N  -  1 )  x.  ( I `  N
) ) ) )
167166eqcomd 2441 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  x.  ( I `  ( N  -  2 ) ) )  -  (
( N  -  1 )  x.  ( I `
 N ) ) )  =  ( I `
 N ) )
16812, 164mulcld 9108 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  x.  (
I `  ( N  -  2 ) ) )  e.  CC )
16912, 74mulcld 9108 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  x.  (
I `  N )
)  e.  CC )
170168, 169, 74subaddd 9429 . . . . 5  |-  ( ph  ->  ( ( ( ( N  -  1 )  x.  ( I `  ( N  -  2
) ) )  -  ( ( N  - 
1 )  x.  (
I `  N )
) )  =  ( I `  N )  <-> 
( ( ( N  -  1 )  x.  ( I `  N
) )  +  ( I `  N ) )  =  ( ( N  -  1 )  x.  ( I `  ( N  -  2
) ) ) ) )
171167, 170mpbid 202 . . . 4  |-  ( ph  ->  ( ( ( N  -  1 )  x.  ( I `  N
) )  +  ( I `  N ) )  =  ( ( N  -  1 )  x.  ( I `  ( N  -  2
) ) ) )
1729, 78, 1713eqtrd 2472 . . 3  |-  ( ph  ->  ( N  x.  (
I `  N )
)  =  ( ( N  -  1 )  x.  ( I `  ( N  -  2
) ) ) )
173172oveq1d 6096 . 2  |-  ( ph  ->  ( ( N  x.  ( I `  N
) )  /  N
)  =  ( ( ( N  -  1 )  x.  ( I `
 ( N  - 
2 ) ) )  /  N ) )
17481nnne0d 10044 . . 3  |-  ( ph  ->  N  =/=  0 )
17574, 4, 174divcan3d 9795 . 2  |-  ( ph  ->  ( ( N  x.  ( I `  N
) )  /  N
)  =  ( I `
 N ) )
17612, 164, 4, 174div23d 9827 . 2  |-  ( ph  ->  ( ( ( N  -  1 )  x.  ( I `  ( N  -  2 ) ) )  /  N
)  =  ( ( ( N  -  1 )  /  N )  x.  ( I `  ( N  -  2
) ) ) )
177173, 175, 1763eqtr3d 2476 1  |-  ( ph  ->  ( I `  N
)  =  ( ( ( N  -  1 )  /  N )  x.  ( I `  ( N  -  2
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2956    C_ wss 3320   class class class wbr 4212    e. cmpt 4266   dom cdm 4878   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    < clt 9120    - cmin 9291   -ucneg 9292    / cdiv 9677   NNcn 10000   2c2 10049   NN0cn0 10221   ZZcz 10282   ZZ>=cuz 10488   (,)cioo 10916   [,]cicc 10919   ^cexp 11382   sincsin 12666   cosccos 12667   picpi 12669   -cn->ccncf 18906   volcvol 19360   L ^1cibl 19509   S.citg 19510
This theorem is referenced by:  wallispilem2  27791  wallispilem4  27793  wallispilem5  27794
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cc 8315  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-disj 4183  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-ofr 6306  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-omul 6729  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-acn 7829  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673  df-pi 12675  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-cmp 17450  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-ovol 19361  df-vol 19362  df-mbf 19512  df-itg1 19513  df-itg2 19514  df-ibl 19515  df-itg 19516  df-0p 19562  df-limc 19753  df-dv 19754
  Copyright terms: Public domain W3C validator