MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsplit Unicode version

Theorem itgsplit 19288
Description: The  S. integral splits under an almost disjoint union. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itgsplit.i  |-  ( ph  ->  ( vol * `  ( A  i^i  B ) )  =  0 )
itgsplit.u  |-  ( ph  ->  U  =  ( A  u.  B ) )
itgsplit.c  |-  ( (
ph  /\  x  e.  U )  ->  C  e.  V )
itgsplit.a  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L ^1 )
itgsplit.b  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  L ^1 )
Assertion
Ref Expression
itgsplit  |-  ( ph  ->  S. U C  _d x  =  ( S. A C  _d x  +  S. B C  _d x ) )
Distinct variable groups:    x, A    x, B    ph, x    x, U    x, V
Allowed substitution hint:    C( x)

Proof of Theorem itgsplit
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 itgsplit.a . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L ^1 )
2 iblmbf 19220 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  C )  e.  L ^1 
->  ( x  e.  A  |->  C )  e. MblFn )
31, 2syl 15 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
4 ssun1 3414 . . . . . . . . . . . 12  |-  A  C_  ( A  u.  B
)
5 itgsplit.u . . . . . . . . . . . 12  |-  ( ph  ->  U  =  ( A  u.  B ) )
64, 5syl5sseqr 3303 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  U )
76sselda 3256 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  U )
8 itgsplit.c . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  U )  ->  C  e.  V )
97, 8syldan 456 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
103, 9mbfdm2 19091 . . . . . . . 8  |-  ( ph  ->  A  e.  dom  vol )
1110adantr 451 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  A  e.  dom  vol )
12 itgsplit.b . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  L ^1 )
13 iblmbf 19220 . . . . . . . . . 10  |-  ( ( x  e.  B  |->  C )  e.  L ^1 
->  ( x  e.  B  |->  C )  e. MblFn )
1412, 13syl 15 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  B  |->  C )  e. MblFn )
15 ssun2 3415 . . . . . . . . . . . 12  |-  B  C_  ( A  u.  B
)
1615, 5syl5sseqr 3303 . . . . . . . . . . 11  |-  ( ph  ->  B  C_  U )
1716sselda 3256 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  U )
1817, 8syldan 456 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  V )
1914, 18mbfdm2 19091 . . . . . . . 8  |-  ( ph  ->  B  e.  dom  vol )
2019adantr 451 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  B  e.  dom  vol )
21 itgsplit.i . . . . . . . 8  |-  ( ph  ->  ( vol * `  ( A  i^i  B ) )  =  0 )
2221adantr 451 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( vol * `  ( A  i^i  B ) )  =  0 )
235adantr 451 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  U  =  ( A  u.  B ) )
245eleq2d 2425 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  U  <->  x  e.  ( A  u.  B ) ) )
25 elun 3392 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
2624, 25syl6bb 252 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  U  <->  ( x  e.  A  \/  x  e.  B )
) )
2726biimpa 470 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  U )  ->  (
x  e.  A  \/  x  e.  B )
)
283, 9mbfmptcl 19090 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
2914, 18mbfmptcl 19090 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  CC )
3028, 29jaodan 760 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  A  \/  x  e.  B ) )  ->  C  e.  CC )
3127, 30syldan 456 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  U )  ->  C  e.  CC )
3231adantlr 695 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  C  e.  CC )
33 ax-icn 8883 . . . . . . . . . . . . . 14  |-  _i  e.  CC
34 elfznn0 10911 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  NN0 )
3534adantl 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  k  e.  NN0 )
36 expcl 11211 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  k  e.  NN0 )  -> 
( _i ^ k
)  e.  CC )
3733, 35, 36sylancr 644 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
_i ^ k )  e.  CC )
3837adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  (
_i ^ k )  e.  CC )
39 elfzelz 10887 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
4039adantl 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  k  e.  ZZ )
41 ine0 9302 . . . . . . . . . . . . . . 15  |-  _i  =/=  0
42 expne0i 11224 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
4333, 41, 42mp3an12 1267 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
4440, 43syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
_i ^ k )  =/=  0 )
4544adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  (
_i ^ k )  =/=  0 )
4632, 38, 45divcld 9623 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  ( C  /  ( _i ^
k ) )  e.  CC )
4746recld 11769 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  e.  RR )
48 0re 8925 . . . . . . . . . 10  |-  0  e.  RR
49 ifcl 3677 . . . . . . . . . 10  |-  ( ( ( Re `  ( C  /  ( _i ^
k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
5047, 48, 49sylancl 643 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
5150rexrd 8968 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR* )
52 max1 10603 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( Re `  ( C  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
5348, 47, 52sylancr 644 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  0  <_  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )
54 elxrge0 10836 . . . . . . . 8  |-  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,]  +oo )  <->  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )
5551, 53, 54sylanbrc 645 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,]  +oo ) )
56 ifan 3680 . . . . . . . 8  |-  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
5756mpteq2i 4182 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
58 ifan 3680 . . . . . . . 8  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
5958mpteq2i 4182 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
60 ifan 3680 . . . . . . . 8  |-  if ( ( x  e.  U  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  U ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
6160mpteq2i 4182 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  U ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
62 eqidd 2359 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
63 eqidd 2359 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
6462, 63, 1, 9iblitg 19221 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
6539, 64sylan2 460 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
66 eqidd 2359 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
67 eqidd 2359 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
6866, 67, 12, 18iblitg 19221 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
6939, 68sylan2 460 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
7011, 20, 22, 23, 55, 57, 59, 61, 65, 69itg2split 19202 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
7170oveq2d 5958 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( _i ^ k )  x.  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
7264recnd 8948 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  CC )
7339, 72sylan2 460 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  CC )
7469recnd 8948 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  CC )
7537, 73, 74adddid 8946 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )  =  ( ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
7671, 75eqtrd 2390 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  +  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
7776sumeq2dv 12267 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  =  sum_ k  e.  ( 0 ... 3 ) ( ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
78 fzfid 11124 . . . 4  |-  ( ph  ->  ( 0 ... 3
)  e.  Fin )
7937, 73mulcld 8942 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  e.  CC )
8037, 74mulcld 8942 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  e.  CC )
8178, 79, 80fsumadd 12302 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( ( _i
^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  +  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )  =  (
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
8277, 81eqtrd 2390 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  =  (
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
83 eqid 2358 . . 3  |-  ( Re
`  ( C  / 
( _i ^ k
) ) )  =  ( Re `  ( C  /  ( _i ^
k ) ) )
8483dfitg 19222 . 2  |-  S. U C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
8583dfitg 19222 . . 3  |-  S. A C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
8683dfitg 19222 . . 3  |-  S. B C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
8785, 86oveq12i 5954 . 2  |-  ( S. A C  _d x  +  S. B C  _d x )  =  ( sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
8882, 84, 873eqtr4g 2415 1  |-  ( ph  ->  S. U C  _d x  =  ( S. A C  _d x  +  S. B C  _d x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1642    e. wcel 1710    =/= wne 2521    u. cun 3226    i^i cin 3227   ifcif 3641   class class class wbr 4102    e. cmpt 4156   dom cdm 4768   ` cfv 5334  (class class class)co 5942   CCcc 8822   RRcr 8823   0cc0 8824   _ici 8826    + caddc 8827    x. cmul 8829    +oocpnf 8951   RR*cxr 8953    <_ cle 8955    / cdiv 9510   3c3 9883   NN0cn0 10054   ZZcz 10113   [,]cicc 10748   ...cfz 10871   ^cexp 11194   Recre 11672   sum_csu 12249   vol
*covol 18920   volcvol 18921  MblFncmbf 19067   S.2citg2 19069   L ^1cibl 19070   S.citg 19071
This theorem is referenced by:  itgspliticc  19289  itgsplitioo  19290
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-inf2 7429  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901  ax-pre-sup 8902  ax-addf 8903
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-disj 4073  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-se 4432  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-isom 5343  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-of 6162  df-ofr 6163  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-1o 6563  df-2o 6564  df-oadd 6567  df-er 6744  df-map 6859  df-pm 6860  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-fi 7252  df-sup 7281  df-oi 7312  df-card 7659  df-cda 7881  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511  df-nn 9834  df-2 9891  df-3 9892  df-4 9893  df-n0 10055  df-z 10114  df-uz 10320  df-q 10406  df-rp 10444  df-xneg 10541  df-xadd 10542  df-xmul 10543  df-ioo 10749  df-ico 10751  df-icc 10752  df-fz 10872  df-fzo 10960  df-fl 11014  df-mod 11063  df-seq 11136  df-exp 11195  df-hash 11428  df-cj 11674  df-re 11675  df-im 11676  df-sqr 11810  df-abs 11811  df-clim 12052  df-sum 12250  df-rest 13420  df-topgen 13437  df-xmet 16469  df-met 16470  df-bl 16471  df-mopn 16472  df-top 16736  df-bases 16738  df-topon 16739  df-cmp 17214  df-ovol 18922  df-vol 18923  df-mbf 19073  df-itg1 19074  df-itg2 19075  df-ibl 19076  df-itg 19077
  Copyright terms: Public domain W3C validator