MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsplitioo Unicode version

Theorem itgsplitioo 19208
Description: The  S. integral splits on open intervals with matching endpoints. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgsplitioo.1  |-  ( ph  ->  A  e.  RR )
itgsplitioo.2  |-  ( ph  ->  C  e.  RR )
itgsplitioo.3  |-  ( ph  ->  B  e.  ( A [,] C ) )
itgsplitioo.4  |-  ( (
ph  /\  x  e.  ( A (,) C ) )  ->  D  e.  CC )
itgsplitioo.5  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  D )  e.  L ^1 )
itgsplitioo.6  |-  ( ph  ->  ( x  e.  ( B (,) C ) 
|->  D )  e.  L ^1 )
Assertion
Ref Expression
itgsplitioo  |-  ( ph  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B
) D  _d x  +  S. ( B (,) C ) D  _d x ) )
Distinct variable groups:    x, A    x, B    x, C    ph, x
Allowed substitution hint:    D( x)

Proof of Theorem itgsplitioo
StepHypRef Expression
1 itgsplitioo.3 . . . . . . 7  |-  ( ph  ->  B  e.  ( A [,] C ) )
2 itgsplitioo.1 . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
3 itgsplitioo.2 . . . . . . . 8  |-  ( ph  ->  C  e.  RR )
4 elicc2 10731 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( B  e.  ( A [,] C )  <-> 
( B  e.  RR  /\  A  <_  B  /\  B  <_  C ) ) )
52, 3, 4syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( B  e.  ( A [,] C )  <-> 
( B  e.  RR  /\  A  <_  B  /\  B  <_  C ) ) )
61, 5mpbid 201 . . . . . 6  |-  ( ph  ->  ( B  e.  RR  /\  A  <_  B  /\  B  <_  C ) )
76simp2d 968 . . . . 5  |-  ( ph  ->  A  <_  B )
86simp1d 967 . . . . . 6  |-  ( ph  ->  B  e.  RR )
92, 8leloed 8978 . . . . 5  |-  ( ph  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B )
) )
107, 9mpbid 201 . . . 4  |-  ( ph  ->  ( A  <  B  \/  A  =  B
) )
1110ord 366 . . 3  |-  ( ph  ->  ( -.  A  < 
B  ->  A  =  B ) )
122rexrd 8897 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR* )
13 iooss1 10707 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  A  <_  B )  ->  ( B (,) C )  C_  ( A (,) C ) )
1412, 7, 13syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( B (,) C
)  C_  ( A (,) C ) )
1514sselda 3193 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( B (,) C ) )  ->  x  e.  ( A (,) C ) )
16 itgsplitioo.4 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) C ) )  ->  D  e.  CC )
1715, 16syldan 456 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( B (,) C ) )  ->  D  e.  CC )
18 itgsplitioo.6 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( B (,) C ) 
|->  D )  e.  L ^1 )
1917, 18itgcl 19154 . . . . . 6  |-  ( ph  ->  S. ( B (,) C ) D  _d x  e.  CC )
2019addid2d 9029 . . . . 5  |-  ( ph  ->  ( 0  +  S. ( B (,) C ) D  _d x )  =  S. ( B (,) C ) D  _d x )
2120eqcomd 2301 . . . 4  |-  ( ph  ->  S. ( B (,) C ) D  _d x  =  ( 0  +  S. ( B (,) C ) D  _d x ) )
22 oveq1 5881 . . . . . 6  |-  ( A  =  B  ->  ( A (,) C )  =  ( B (,) C
) )
23 itgeq1 19143 . . . . . 6  |-  ( ( A (,) C )  =  ( B (,) C )  ->  S. ( A (,) C ) D  _d x  =  S. ( B (,) C ) D  _d x )
2422, 23syl 15 . . . . 5  |-  ( A  =  B  ->  S. ( A (,) C ) D  _d x  =  S. ( B (,) C ) D  _d x )
25 oveq1 5881 . . . . . . . . 9  |-  ( A  =  B  ->  ( A (,) B )  =  ( B (,) B
) )
26 iooid 10700 . . . . . . . . 9  |-  ( B (,) B )  =  (/)
2725, 26syl6eq 2344 . . . . . . . 8  |-  ( A  =  B  ->  ( A (,) B )  =  (/) )
28 itgeq1 19143 . . . . . . . 8  |-  ( ( A (,) B )  =  (/)  ->  S. ( A (,) B ) D  _d x  =  S. (/) D  _d x )
2927, 28syl 15 . . . . . . 7  |-  ( A  =  B  ->  S. ( A (,) B ) D  _d x  =  S. (/) D  _d x )
30 itg0 19150 . . . . . . 7  |-  S. (/) D  _d x  =  0
3129, 30syl6eq 2344 . . . . . 6  |-  ( A  =  B  ->  S. ( A (,) B ) D  _d x  =  0 )
3231oveq1d 5889 . . . . 5  |-  ( A  =  B  ->  ( S. ( A (,) B
) D  _d x  +  S. ( B (,) C ) D  _d x )  =  ( 0  +  S. ( B (,) C ) D  _d x ) )
3324, 32eqeq12d 2310 . . . 4  |-  ( A  =  B  ->  ( S. ( A (,) C
) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C
) D  _d x )  <->  S. ( B (,) C ) D  _d x  =  ( 0  +  S. ( B (,) C ) D  _d x ) ) )
3421, 33syl5ibrcom 213 . . 3  |-  ( ph  ->  ( A  =  B  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
3511, 34syld 40 . 2  |-  ( ph  ->  ( -.  A  < 
B  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
366simp3d 969 . . . . 5  |-  ( ph  ->  B  <_  C )
378, 3leloed 8978 . . . . 5  |-  ( ph  ->  ( B  <_  C  <->  ( B  <  C  \/  B  =  C )
) )
3836, 37mpbid 201 . . . 4  |-  ( ph  ->  ( B  <  C  \/  B  =  C
) )
3938ord 366 . . 3  |-  ( ph  ->  ( -.  B  < 
C  ->  B  =  C ) )
403rexrd 8897 . . . . . . . . . 10  |-  ( ph  ->  C  e.  RR* )
41 iooss2 10708 . . . . . . . . . 10  |-  ( ( C  e.  RR*  /\  B  <_  C )  ->  ( A (,) B )  C_  ( A (,) C ) )
4240, 36, 41syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( A (,) B
)  C_  ( A (,) C ) )
4342sselda 3193 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  ( A (,) C ) )
4443, 16syldan 456 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  D  e.  CC )
45 itgsplitioo.5 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  D )  e.  L ^1 )
4644, 45itgcl 19154 . . . . . 6  |-  ( ph  ->  S. ( A (,) B ) D  _d x  e.  CC )
4746addid1d 9028 . . . . 5  |-  ( ph  ->  ( S. ( A (,) B ) D  _d x  +  0 )  =  S. ( A (,) B ) D  _d x )
4847eqcomd 2301 . . . 4  |-  ( ph  ->  S. ( A (,) B ) D  _d x  =  ( S. ( A (,) B
) D  _d x  +  0 ) )
49 oveq2 5882 . . . . . 6  |-  ( B  =  C  ->  ( A (,) B )  =  ( A (,) C
) )
50 itgeq1 19143 . . . . . 6  |-  ( ( A (,) B )  =  ( A (,) C )  ->  S. ( A (,) B ) D  _d x  =  S. ( A (,) C ) D  _d x )
5149, 50syl 15 . . . . 5  |-  ( B  =  C  ->  S. ( A (,) B ) D  _d x  =  S. ( A (,) C ) D  _d x )
52 oveq2 5882 . . . . . . . . 9  |-  ( B  =  C  ->  ( B (,) B )  =  ( B (,) C
) )
5326, 52syl5eqr 2342 . . . . . . . 8  |-  ( B  =  C  ->  (/)  =  ( B (,) C ) )
54 itgeq1 19143 . . . . . . . 8  |-  ( (/)  =  ( B (,) C )  ->  S. (/) D  _d x  =  S. ( B (,) C ) D  _d x )
5553, 54syl 15 . . . . . . 7  |-  ( B  =  C  ->  S. (/) D  _d x  =  S. ( B (,) C ) D  _d x )
5630, 55syl5eqr 2342 . . . . . 6  |-  ( B  =  C  ->  0  =  S. ( B (,) C ) D  _d x )
5756oveq2d 5890 . . . . 5  |-  ( B  =  C  ->  ( S. ( A (,) B
) D  _d x  +  0 )  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) )
5851, 57eqeq12d 2310 . . . 4  |-  ( B  =  C  ->  ( S. ( A (,) B
) D  _d x  =  ( S. ( A (,) B ) D  _d x  + 
0 )  <->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
5948, 58syl5ibcom 211 . . 3  |-  ( ph  ->  ( B  =  C  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
6039, 59syld 40 . 2  |-  ( ph  ->  ( -.  B  < 
C  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
61 indir 3430 . . . . . . . 8  |-  ( ( ( A (,) B
)  u.  { B } )  i^i  ( B (,) C ) )  =  ( ( ( A (,) B )  i^i  ( B (,) C ) )  u.  ( { B }  i^i  ( B (,) C
) ) )
628rexrd 8897 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  RR* )
6312, 62jca 518 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  e.  RR*  /\  B  e.  RR* )
)
6463adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( A  e.  RR*  /\  B  e.  RR* )
)
6562, 40jca 518 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  e.  RR*  /\  C  e.  RR* )
)
6665adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( B  e.  RR*  /\  C  e.  RR* )
)
678adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  B  e.  RR )
6867leidd 9355 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  B  <_  B )
69 ioodisj 10781 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( B  e.  RR*  /\  C  e. 
RR* ) )  /\  B  <_  B )  -> 
( ( A (,) B )  i^i  ( B (,) C ) )  =  (/) )
7064, 66, 68, 69syl21anc 1181 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( A (,) B )  i^i  ( B (,) C ) )  =  (/) )
71 incom 3374 . . . . . . . . . . 11  |-  ( { B }  i^i  ( B (,) C ) )  =  ( ( B (,) C )  i^i 
{ B } )
7267ltnrd 8969 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  -.  B  <  B )
73 eliooord 10726 . . . . . . . . . . . . . 14  |-  ( B  e.  ( B (,) C )  ->  ( B  <  B  /\  B  <  C ) )
7473simpld 445 . . . . . . . . . . . . 13  |-  ( B  e.  ( B (,) C )  ->  B  <  B )
7572, 74nsyl 113 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  -.  B  e.  ( B (,) C ) )
76 disjsn 3706 . . . . . . . . . . . 12  |-  ( ( ( B (,) C
)  i^i  { B } )  =  (/)  <->  -.  B  e.  ( B (,) C ) )
7775, 76sylibr 203 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( B (,) C )  i^i  { B } )  =  (/) )
7871, 77syl5eq 2340 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( { B }  i^i  ( B (,) C
) )  =  (/) )
7970, 78uneq12d 3343 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  i^i  ( B (,) C
) )  u.  ( { B }  i^i  ( B (,) C ) ) )  =  ( (/)  u.  (/) ) )
80 un0 3492 . . . . . . . . 9  |-  ( (/)  u.  (/) )  =  (/)
8179, 80syl6eq 2344 . . . . . . . 8  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  i^i  ( B (,) C
) )  u.  ( { B }  i^i  ( B (,) C ) ) )  =  (/) )
8261, 81syl5eq 2340 . . . . . . 7  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  u. 
{ B } )  i^i  ( B (,) C ) )  =  (/) )
8382fveq2d 5545 . . . . . 6  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( vol * `  ( ( ( A (,) B )  u. 
{ B } )  i^i  ( B (,) C ) ) )  =  ( vol * `  (/) ) )
84 ovol0 18868 . . . . . 6  |-  ( vol
* `  (/) )  =  0
8583, 84syl6eq 2344 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( vol * `  ( ( ( A (,) B )  u. 
{ B } )  i^i  ( B (,) C ) ) )  =  0 )
8612, 62, 403jca 1132 . . . . . . 7  |-  ( ph  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* ) )
87 ioojoin 10782 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  -> 
( ( ( A (,) B )  u. 
{ B } )  u.  ( B (,) C ) )  =  ( A (,) C
) )
8886, 87sylan 457 . . . . . 6  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  u. 
{ B } )  u.  ( B (,) C ) )  =  ( A (,) C
) )
8988eqcomd 2301 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( A (,) C
)  =  ( ( ( A (,) B
)  u.  { B } )  u.  ( B (,) C ) ) )
9016adantlr 695 . . . . 5  |-  ( ( ( ph  /\  ( A  <  B  /\  B  <  C ) )  /\  x  e.  ( A (,) C ) )  ->  D  e.  CC )
9145adantr 451 . . . . . 6  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( x  e.  ( A (,) B ) 
|->  D )  e.  L ^1 )
92 ssun1 3351 . . . . . . . . 9  |-  ( A (,) B )  C_  ( ( A (,) B )  u.  { B } )
9392a1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( A (,) B
)  C_  ( ( A (,) B )  u. 
{ B } ) )
94 ioossre 10728 . . . . . . . . . 10  |-  ( A (,) B )  C_  RR
9594a1i 10 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( A (,) B
)  C_  RR )
9667snssd 3776 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  { B }  C_  RR )
9795, 96unssd 3364 . . . . . . . 8  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( A (,) B )  u.  { B } )  C_  RR )
98 uncom 3332 . . . . . . . . . . . . 13  |-  ( ( A (,) B )  u.  { B }
)  =  ( { B }  u.  ( A (,) B ) )
9998difeq1i 3303 . . . . . . . . . . . 12  |-  ( ( ( A (,) B
)  u.  { B } )  \  ( A (,) B ) )  =  ( ( { B }  u.  ( A (,) B ) ) 
\  ( A (,) B ) )
100 difun2 3546 . . . . . . . . . . . 12  |-  ( ( { B }  u.  ( A (,) B ) )  \  ( A (,) B ) )  =  ( { B }  \  ( A (,) B ) )
10199, 100eqtri 2316 . . . . . . . . . . 11  |-  ( ( ( A (,) B
)  u.  { B } )  \  ( A (,) B ) )  =  ( { B }  \  ( A (,) B ) )
102 difss 3316 . . . . . . . . . . 11  |-  ( { B }  \  ( A (,) B ) ) 
C_  { B }
103101, 102eqsstri 3221 . . . . . . . . . 10  |-  ( ( ( A (,) B
)  u.  { B } )  \  ( A (,) B ) ) 
C_  { B }
104103a1i 10 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  u. 
{ B } ) 
\  ( A (,) B ) )  C_  { B } )
105 ovolsn 18870 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( vol * `  { B } )  =  0 )
10667, 105syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( vol * `  { B } )  =  0 )
107 ovolssnul 18862 . . . . . . . . 9  |-  ( ( ( ( ( A (,) B )  u. 
{ B } ) 
\  ( A (,) B ) )  C_  { B }  /\  { B }  C_  RR  /\  ( vol * `  { B } )  =  0 )  ->  ( vol * `
 ( ( ( A (,) B )  u.  { B }
)  \  ( A (,) B ) ) )  =  0 )
108104, 96, 106, 107syl3anc 1182 . . . . . . . 8  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( vol * `  ( ( ( A (,) B )  u. 
{ B } ) 
\  ( A (,) B ) ) )  =  0 )
109 ssun1 3351 . . . . . . . . . . 11  |-  ( ( A (,) B )  u.  { B }
)  C_  ( (
( A (,) B
)  u.  { B } )  u.  ( B (,) C ) )
110109, 88syl5sseq 3239 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( A (,) B )  u.  { B } )  C_  ( A (,) C ) )
111110sselda 3193 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A  <  B  /\  B  <  C ) )  /\  x  e.  ( ( A (,) B )  u. 
{ B } ) )  ->  x  e.  ( A (,) C ) )
112111, 90syldan 456 . . . . . . . 8  |-  ( ( ( ph  /\  ( A  <  B  /\  B  <  C ) )  /\  x  e.  ( ( A (,) B )  u. 
{ B } ) )  ->  D  e.  CC )
11393, 97, 108, 112itgss3 19185 . . . . . . 7  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( x  e.  ( A (,) B )  |->  D )  e.  L ^1  <->  ( x  e.  ( ( A (,) B )  u.  { B } )  |->  D )  e.  L ^1 )  /\  S. ( A (,) B ) D  _d x  =  S. ( ( A (,) B )  u.  { B } ) D  _d x ) )
114113simpld 445 . . . . . 6  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( x  e.  ( A (,) B
)  |->  D )  e.  L ^1  <->  ( x  e.  ( ( A (,) B )  u.  { B } )  |->  D )  e.  L ^1 ) )
11591, 114mpbid 201 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( x  e.  ( ( A (,) B
)  u.  { B } )  |->  D )  e.  L ^1 )
11618adantr 451 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( x  e.  ( B (,) C ) 
|->  D )  e.  L ^1 )
11785, 89, 90, 115, 116itgsplit 19206 . . . 4  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  S. ( A (,) C
) D  _d x  =  ( S. ( ( A (,) B
)  u.  { B } ) D  _d x  +  S. ( B (,) C ) D  _d x ) )
118113simprd 449 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  S. ( A (,) B
) D  _d x  =  S. ( ( A (,) B )  u.  { B }
) D  _d x )
119118oveq1d 5889 . . . 4  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x )  =  ( S. ( ( A (,) B
)  u.  { B } ) D  _d x  +  S. ( B (,) C ) D  _d x ) )
120117, 119eqtr4d 2331 . . 3  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  S. ( A (,) C
) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C
) D  _d x ) )
121120ex 423 . 2  |-  ( ph  ->  ( ( A  < 
B  /\  B  <  C )  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
12235, 60, 121ecased 910 1  |-  ( ph  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B
) D  _d x  +  S. ( B (,) C ) D  _d x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    \ cdif 3162    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753    + caddc 8756   RR*cxr 8882    < clt 8883    <_ cle 8884   (,)cioo 10672   [,]cicc 10675   vol *covol 18838   L ^1cibl 18988   S.citg 18989
This theorem is referenced by:  ditgsplitlem  19226  ftc1lem1  19398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-ofr 6095  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-rest 13343  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655  df-cmp 17130  df-ovol 18840  df-vol 18841  df-mbf 18991  df-itg1 18992  df-itg2 18993  df-ibl 18994  df-itg 18995  df-0p 19041
  Copyright terms: Public domain W3C validator