MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsplitioo Unicode version

Theorem itgsplitioo 19598
Description: The  S. integral splits on open intervals with matching endpoints. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgsplitioo.1  |-  ( ph  ->  A  e.  RR )
itgsplitioo.2  |-  ( ph  ->  C  e.  RR )
itgsplitioo.3  |-  ( ph  ->  B  e.  ( A [,] C ) )
itgsplitioo.4  |-  ( (
ph  /\  x  e.  ( A (,) C ) )  ->  D  e.  CC )
itgsplitioo.5  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  D )  e.  L ^1 )
itgsplitioo.6  |-  ( ph  ->  ( x  e.  ( B (,) C ) 
|->  D )  e.  L ^1 )
Assertion
Ref Expression
itgsplitioo  |-  ( ph  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B
) D  _d x  +  S. ( B (,) C ) D  _d x ) )
Distinct variable groups:    x, A    x, B    x, C    ph, x
Allowed substitution hint:    D( x)

Proof of Theorem itgsplitioo
StepHypRef Expression
1 itgsplitioo.3 . . . . . . 7  |-  ( ph  ->  B  e.  ( A [,] C ) )
2 itgsplitioo.1 . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
3 itgsplitioo.2 . . . . . . . 8  |-  ( ph  ->  C  e.  RR )
4 elicc2 10909 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( B  e.  ( A [,] C )  <-> 
( B  e.  RR  /\  A  <_  B  /\  B  <_  C ) ) )
52, 3, 4syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( B  e.  ( A [,] C )  <-> 
( B  e.  RR  /\  A  <_  B  /\  B  <_  C ) ) )
61, 5mpbid 202 . . . . . 6  |-  ( ph  ->  ( B  e.  RR  /\  A  <_  B  /\  B  <_  C ) )
76simp2d 970 . . . . 5  |-  ( ph  ->  A  <_  B )
86simp1d 969 . . . . . 6  |-  ( ph  ->  B  e.  RR )
92, 8leloed 9150 . . . . 5  |-  ( ph  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B )
) )
107, 9mpbid 202 . . . 4  |-  ( ph  ->  ( A  <  B  \/  A  =  B
) )
1110ord 367 . . 3  |-  ( ph  ->  ( -.  A  < 
B  ->  A  =  B ) )
122rexrd 9069 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR* )
13 iooss1 10885 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  A  <_  B )  ->  ( B (,) C )  C_  ( A (,) C ) )
1412, 7, 13syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( B (,) C
)  C_  ( A (,) C ) )
1514sselda 3293 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( B (,) C ) )  ->  x  e.  ( A (,) C ) )
16 itgsplitioo.4 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) C ) )  ->  D  e.  CC )
1715, 16syldan 457 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( B (,) C ) )  ->  D  e.  CC )
18 itgsplitioo.6 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( B (,) C ) 
|->  D )  e.  L ^1 )
1917, 18itgcl 19544 . . . . . 6  |-  ( ph  ->  S. ( B (,) C ) D  _d x  e.  CC )
2019addid2d 9201 . . . . 5  |-  ( ph  ->  ( 0  +  S. ( B (,) C ) D  _d x )  =  S. ( B (,) C ) D  _d x )
2120eqcomd 2394 . . . 4  |-  ( ph  ->  S. ( B (,) C ) D  _d x  =  ( 0  +  S. ( B (,) C ) D  _d x ) )
22 oveq1 6029 . . . . . 6  |-  ( A  =  B  ->  ( A (,) C )  =  ( B (,) C
) )
23 itgeq1 19533 . . . . . 6  |-  ( ( A (,) C )  =  ( B (,) C )  ->  S. ( A (,) C ) D  _d x  =  S. ( B (,) C ) D  _d x )
2422, 23syl 16 . . . . 5  |-  ( A  =  B  ->  S. ( A (,) C ) D  _d x  =  S. ( B (,) C ) D  _d x )
25 oveq1 6029 . . . . . . . . 9  |-  ( A  =  B  ->  ( A (,) B )  =  ( B (,) B
) )
26 iooid 10878 . . . . . . . . 9  |-  ( B (,) B )  =  (/)
2725, 26syl6eq 2437 . . . . . . . 8  |-  ( A  =  B  ->  ( A (,) B )  =  (/) )
28 itgeq1 19533 . . . . . . . 8  |-  ( ( A (,) B )  =  (/)  ->  S. ( A (,) B ) D  _d x  =  S. (/) D  _d x )
2927, 28syl 16 . . . . . . 7  |-  ( A  =  B  ->  S. ( A (,) B ) D  _d x  =  S. (/) D  _d x )
30 itg0 19540 . . . . . . 7  |-  S. (/) D  _d x  =  0
3129, 30syl6eq 2437 . . . . . 6  |-  ( A  =  B  ->  S. ( A (,) B ) D  _d x  =  0 )
3231oveq1d 6037 . . . . 5  |-  ( A  =  B  ->  ( S. ( A (,) B
) D  _d x  +  S. ( B (,) C ) D  _d x )  =  ( 0  +  S. ( B (,) C ) D  _d x ) )
3324, 32eqeq12d 2403 . . . 4  |-  ( A  =  B  ->  ( S. ( A (,) C
) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C
) D  _d x )  <->  S. ( B (,) C ) D  _d x  =  ( 0  +  S. ( B (,) C ) D  _d x ) ) )
3421, 33syl5ibrcom 214 . . 3  |-  ( ph  ->  ( A  =  B  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
3511, 34syld 42 . 2  |-  ( ph  ->  ( -.  A  < 
B  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
366simp3d 971 . . . . 5  |-  ( ph  ->  B  <_  C )
378, 3leloed 9150 . . . . 5  |-  ( ph  ->  ( B  <_  C  <->  ( B  <  C  \/  B  =  C )
) )
3836, 37mpbid 202 . . . 4  |-  ( ph  ->  ( B  <  C  \/  B  =  C
) )
3938ord 367 . . 3  |-  ( ph  ->  ( -.  B  < 
C  ->  B  =  C ) )
403rexrd 9069 . . . . . . . . . 10  |-  ( ph  ->  C  e.  RR* )
41 iooss2 10886 . . . . . . . . . 10  |-  ( ( C  e.  RR*  /\  B  <_  C )  ->  ( A (,) B )  C_  ( A (,) C ) )
4240, 36, 41syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( A (,) B
)  C_  ( A (,) C ) )
4342sselda 3293 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  ( A (,) C ) )
4443, 16syldan 457 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  D  e.  CC )
45 itgsplitioo.5 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  D )  e.  L ^1 )
4644, 45itgcl 19544 . . . . . 6  |-  ( ph  ->  S. ( A (,) B ) D  _d x  e.  CC )
4746addid1d 9200 . . . . 5  |-  ( ph  ->  ( S. ( A (,) B ) D  _d x  +  0 )  =  S. ( A (,) B ) D  _d x )
4847eqcomd 2394 . . . 4  |-  ( ph  ->  S. ( A (,) B ) D  _d x  =  ( S. ( A (,) B
) D  _d x  +  0 ) )
49 oveq2 6030 . . . . . 6  |-  ( B  =  C  ->  ( A (,) B )  =  ( A (,) C
) )
50 itgeq1 19533 . . . . . 6  |-  ( ( A (,) B )  =  ( A (,) C )  ->  S. ( A (,) B ) D  _d x  =  S. ( A (,) C ) D  _d x )
5149, 50syl 16 . . . . 5  |-  ( B  =  C  ->  S. ( A (,) B ) D  _d x  =  S. ( A (,) C ) D  _d x )
52 oveq2 6030 . . . . . . . . 9  |-  ( B  =  C  ->  ( B (,) B )  =  ( B (,) C
) )
5326, 52syl5eqr 2435 . . . . . . . 8  |-  ( B  =  C  ->  (/)  =  ( B (,) C ) )
54 itgeq1 19533 . . . . . . . 8  |-  ( (/)  =  ( B (,) C )  ->  S. (/) D  _d x  =  S. ( B (,) C ) D  _d x )
5553, 54syl 16 . . . . . . 7  |-  ( B  =  C  ->  S. (/) D  _d x  =  S. ( B (,) C ) D  _d x )
5630, 55syl5eqr 2435 . . . . . 6  |-  ( B  =  C  ->  0  =  S. ( B (,) C ) D  _d x )
5756oveq2d 6038 . . . . 5  |-  ( B  =  C  ->  ( S. ( A (,) B
) D  _d x  +  0 )  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) )
5851, 57eqeq12d 2403 . . . 4  |-  ( B  =  C  ->  ( S. ( A (,) B
) D  _d x  =  ( S. ( A (,) B ) D  _d x  + 
0 )  <->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
5948, 58syl5ibcom 212 . . 3  |-  ( ph  ->  ( B  =  C  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
6039, 59syld 42 . 2  |-  ( ph  ->  ( -.  B  < 
C  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
61 indir 3534 . . . . . . . 8  |-  ( ( ( A (,) B
)  u.  { B } )  i^i  ( B (,) C ) )  =  ( ( ( A (,) B )  i^i  ( B (,) C ) )  u.  ( { B }  i^i  ( B (,) C
) ) )
628rexrd 9069 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  RR* )
6312, 62jca 519 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  e.  RR*  /\  B  e.  RR* )
)
6463adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( A  e.  RR*  /\  B  e.  RR* )
)
6562, 40jca 519 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  e.  RR*  /\  C  e.  RR* )
)
6665adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( B  e.  RR*  /\  C  e.  RR* )
)
678adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  B  e.  RR )
6867leidd 9527 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  B  <_  B )
69 ioodisj 10960 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( B  e.  RR*  /\  C  e. 
RR* ) )  /\  B  <_  B )  -> 
( ( A (,) B )  i^i  ( B (,) C ) )  =  (/) )
7064, 66, 68, 69syl21anc 1183 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( A (,) B )  i^i  ( B (,) C ) )  =  (/) )
71 incom 3478 . . . . . . . . . . 11  |-  ( { B }  i^i  ( B (,) C ) )  =  ( ( B (,) C )  i^i 
{ B } )
7267ltnrd 9141 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  -.  B  <  B )
73 eliooord 10904 . . . . . . . . . . . . . 14  |-  ( B  e.  ( B (,) C )  ->  ( B  <  B  /\  B  <  C ) )
7473simpld 446 . . . . . . . . . . . . 13  |-  ( B  e.  ( B (,) C )  ->  B  <  B )
7572, 74nsyl 115 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  -.  B  e.  ( B (,) C ) )
76 disjsn 3813 . . . . . . . . . . . 12  |-  ( ( ( B (,) C
)  i^i  { B } )  =  (/)  <->  -.  B  e.  ( B (,) C ) )
7775, 76sylibr 204 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( B (,) C )  i^i  { B } )  =  (/) )
7871, 77syl5eq 2433 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( { B }  i^i  ( B (,) C
) )  =  (/) )
7970, 78uneq12d 3447 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  i^i  ( B (,) C
) )  u.  ( { B }  i^i  ( B (,) C ) ) )  =  ( (/)  u.  (/) ) )
80 un0 3597 . . . . . . . . 9  |-  ( (/)  u.  (/) )  =  (/)
8179, 80syl6eq 2437 . . . . . . . 8  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  i^i  ( B (,) C
) )  u.  ( { B }  i^i  ( B (,) C ) ) )  =  (/) )
8261, 81syl5eq 2433 . . . . . . 7  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  u. 
{ B } )  i^i  ( B (,) C ) )  =  (/) )
8382fveq2d 5674 . . . . . 6  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( vol * `  ( ( ( A (,) B )  u. 
{ B } )  i^i  ( B (,) C ) ) )  =  ( vol * `  (/) ) )
84 ovol0 19258 . . . . . 6  |-  ( vol
* `  (/) )  =  0
8583, 84syl6eq 2437 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( vol * `  ( ( ( A (,) B )  u. 
{ B } )  i^i  ( B (,) C ) ) )  =  0 )
8612, 62, 403jca 1134 . . . . . . 7  |-  ( ph  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* ) )
87 ioojoin 10961 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  -> 
( ( ( A (,) B )  u. 
{ B } )  u.  ( B (,) C ) )  =  ( A (,) C
) )
8886, 87sylan 458 . . . . . 6  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  u. 
{ B } )  u.  ( B (,) C ) )  =  ( A (,) C
) )
8988eqcomd 2394 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( A (,) C
)  =  ( ( ( A (,) B
)  u.  { B } )  u.  ( B (,) C ) ) )
9016adantlr 696 . . . . 5  |-  ( ( ( ph  /\  ( A  <  B  /\  B  <  C ) )  /\  x  e.  ( A (,) C ) )  ->  D  e.  CC )
9145adantr 452 . . . . . 6  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( x  e.  ( A (,) B ) 
|->  D )  e.  L ^1 )
92 ssun1 3455 . . . . . . . . 9  |-  ( A (,) B )  C_  ( ( A (,) B )  u.  { B } )
9392a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( A (,) B
)  C_  ( ( A (,) B )  u. 
{ B } ) )
94 ioossre 10906 . . . . . . . . . 10  |-  ( A (,) B )  C_  RR
9594a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( A (,) B
)  C_  RR )
9667snssd 3888 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  { B }  C_  RR )
9795, 96unssd 3468 . . . . . . . 8  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( A (,) B )  u.  { B } )  C_  RR )
98 uncom 3436 . . . . . . . . . . . . 13  |-  ( ( A (,) B )  u.  { B }
)  =  ( { B }  u.  ( A (,) B ) )
9998difeq1i 3406 . . . . . . . . . . . 12  |-  ( ( ( A (,) B
)  u.  { B } )  \  ( A (,) B ) )  =  ( ( { B }  u.  ( A (,) B ) ) 
\  ( A (,) B ) )
100 difun2 3652 . . . . . . . . . . . 12  |-  ( ( { B }  u.  ( A (,) B ) )  \  ( A (,) B ) )  =  ( { B }  \  ( A (,) B ) )
10199, 100eqtri 2409 . . . . . . . . . . 11  |-  ( ( ( A (,) B
)  u.  { B } )  \  ( A (,) B ) )  =  ( { B }  \  ( A (,) B ) )
102 difss 3419 . . . . . . . . . . 11  |-  ( { B }  \  ( A (,) B ) ) 
C_  { B }
103101, 102eqsstri 3323 . . . . . . . . . 10  |-  ( ( ( A (,) B
)  u.  { B } )  \  ( A (,) B ) ) 
C_  { B }
104103a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  u. 
{ B } ) 
\  ( A (,) B ) )  C_  { B } )
105 ovolsn 19260 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( vol * `  { B } )  =  0 )
10667, 105syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( vol * `  { B } )  =  0 )
107 ovolssnul 19252 . . . . . . . . 9  |-  ( ( ( ( ( A (,) B )  u. 
{ B } ) 
\  ( A (,) B ) )  C_  { B }  /\  { B }  C_  RR  /\  ( vol * `  { B } )  =  0 )  ->  ( vol * `
 ( ( ( A (,) B )  u.  { B }
)  \  ( A (,) B ) ) )  =  0 )
108104, 96, 106, 107syl3anc 1184 . . . . . . . 8  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( vol * `  ( ( ( A (,) B )  u. 
{ B } ) 
\  ( A (,) B ) ) )  =  0 )
109 ssun1 3455 . . . . . . . . . . 11  |-  ( ( A (,) B )  u.  { B }
)  C_  ( (
( A (,) B
)  u.  { B } )  u.  ( B (,) C ) )
110109, 88syl5sseq 3341 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( A (,) B )  u.  { B } )  C_  ( A (,) C ) )
111110sselda 3293 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A  <  B  /\  B  <  C ) )  /\  x  e.  ( ( A (,) B )  u. 
{ B } ) )  ->  x  e.  ( A (,) C ) )
112111, 90syldan 457 . . . . . . . 8  |-  ( ( ( ph  /\  ( A  <  B  /\  B  <  C ) )  /\  x  e.  ( ( A (,) B )  u. 
{ B } ) )  ->  D  e.  CC )
11393, 97, 108, 112itgss3 19575 . . . . . . 7  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( x  e.  ( A (,) B )  |->  D )  e.  L ^1  <->  ( x  e.  ( ( A (,) B )  u.  { B } )  |->  D )  e.  L ^1 )  /\  S. ( A (,) B ) D  _d x  =  S. ( ( A (,) B )  u.  { B } ) D  _d x ) )
114113simpld 446 . . . . . 6  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( x  e.  ( A (,) B
)  |->  D )  e.  L ^1  <->  ( x  e.  ( ( A (,) B )  u.  { B } )  |->  D )  e.  L ^1 ) )
11591, 114mpbid 202 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( x  e.  ( ( A (,) B
)  u.  { B } )  |->  D )  e.  L ^1 )
11618adantr 452 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( x  e.  ( B (,) C ) 
|->  D )  e.  L ^1 )
11785, 89, 90, 115, 116itgsplit 19596 . . . 4  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  S. ( A (,) C
) D  _d x  =  ( S. ( ( A (,) B
)  u.  { B } ) D  _d x  +  S. ( B (,) C ) D  _d x ) )
118113simprd 450 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  S. ( A (,) B
) D  _d x  =  S. ( ( A (,) B )  u.  { B }
) D  _d x )
119118oveq1d 6037 . . . 4  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x )  =  ( S. ( ( A (,) B
)  u.  { B } ) D  _d x  +  S. ( B (,) C ) D  _d x ) )
120117, 119eqtr4d 2424 . . 3  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  S. ( A (,) C
) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C
) D  _d x ) )
121120ex 424 . 2  |-  ( ph  ->  ( ( A  < 
B  /\  B  <  C )  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
12235, 60, 121ecased 911 1  |-  ( ph  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B
) D  _d x  +  S. ( B (,) C ) D  _d x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    \ cdif 3262    u. cun 3263    i^i cin 3264    C_ wss 3265   (/)c0 3573   {csn 3759   class class class wbr 4155    e. cmpt 4209   ` cfv 5396  (class class class)co 6022   CCcc 8923   RRcr 8924   0cc0 8925    + caddc 8928   RR*cxr 9054    < clt 9055    <_ cle 9056   (,)cioo 10850   [,]cicc 10853   vol *covol 19228   L ^1cibl 19378   S.citg 19379
This theorem is referenced by:  ditgsplitlem  19616  ftc1lem1  19788
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003  ax-addf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-disj 4126  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-ofr 6247  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-2o 6663  df-oadd 6666  df-er 6843  df-map 6958  df-pm 6959  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-fi 7353  df-sup 7383  df-oi 7414  df-card 7761  df-cda 7983  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-n0 10156  df-z 10217  df-uz 10423  df-q 10509  df-rp 10547  df-xneg 10644  df-xadd 10645  df-xmul 10646  df-ioo 10854  df-ico 10856  df-icc 10857  df-fz 10978  df-fzo 11068  df-fl 11131  df-mod 11180  df-seq 11253  df-exp 11312  df-hash 11548  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970  df-clim 12211  df-sum 12409  df-rest 13579  df-topgen 13596  df-xmet 16621  df-met 16622  df-bl 16623  df-mopn 16624  df-top 16888  df-bases 16890  df-topon 16891  df-cmp 17374  df-ovol 19230  df-vol 19231  df-mbf 19381  df-itg1 19382  df-itg2 19383  df-ibl 19384  df-itg 19385  df-0p 19431
  Copyright terms: Public domain W3C validator