MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsubstlem Unicode version

Theorem itgsubstlem 19395
Description: Lemma for itgsubst 19396. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
itgsubst.x  |-  ( ph  ->  X  e.  RR )
itgsubst.y  |-  ( ph  ->  Y  e.  RR )
itgsubst.le  |-  ( ph  ->  X  <_  Y )
itgsubst.z  |-  ( ph  ->  Z  e.  RR* )
itgsubst.w  |-  ( ph  ->  W  e.  RR* )
itgsubst.a  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
itgsubst.b  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L ^1 ) )
itgsubst.c  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC ) )
itgsubst.da  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
itgsubst.e  |-  ( u  =  A  ->  C  =  E )
itgsubst.k  |-  ( x  =  X  ->  A  =  K )
itgsubst.l  |-  ( x  =  Y  ->  A  =  L )
itgsubst.m  |-  ( ph  ->  M  e.  ( Z (,) W ) )
itgsubst.n  |-  ( ph  ->  N  e.  ( Z (,) W ) )
itgsubst.cl2  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( M (,) N ) )
Assertion
Ref Expression
itgsubstlem  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Distinct variable groups:    u, E    x, u, K    u, M, x    ph, u, x    u, X, x    u, Y, x   
u, A    x, C    u, W, x    u, L, x    u, N, x   
u, Z, x
Allowed substitution hints:    A( x)    B( x, u)    C( u)    E( x)

Proof of Theorem itgsubstlem
Dummy variables  y 
z  t  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgsubst.le . . 3  |-  ( ph  ->  X  <_  Y )
21ditgpos 19206 . 2  |-  ( ph  ->  S__ [ X  ->  Y ] ( E  x.  B )  _d x  =  S. ( X (,) Y ) ( E  x.  B )  _d x )
3 itgsubst.x . . . 4  |-  ( ph  ->  X  e.  RR )
4 itgsubst.y . . . 4  |-  ( ph  ->  Y  e.  RR )
5 ax-resscn 8794 . . . . . . . 8  |-  RR  C_  CC
65a1i 10 . . . . . . 7  |-  ( ph  ->  RR  C_  CC )
7 iccssre 10731 . . . . . . . 8  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( X [,] Y
)  C_  RR )
83, 4, 7syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( X [,] Y
)  C_  RR )
9 itgsubst.cl2 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( M (,) N ) )
10 eqidd 2284 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  =  ( x  e.  ( X [,] Y )  |->  A ) )
11 eqidd 2284 . . . . . . . . . . . 12  |-  ( ph  ->  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u )  =  ( v  e.  ( M (,) N )  |->  S. ( M (,) v
) C  _d u ) )
12 oveq2 5866 . . . . . . . . . . . . 13  |-  ( v  =  A  ->  ( M (,) v )  =  ( M (,) A
) )
13 itgeq1 19127 . . . . . . . . . . . . 13  |-  ( ( M (,) v )  =  ( M (,) A )  ->  S. ( M (,) v ) C  _d u  =  S. ( M (,) A ) C  _d u )
1412, 13syl 15 . . . . . . . . . . . 12  |-  ( v  =  A  ->  S. ( M (,) v ) C  _d u  =  S. ( M (,) A ) C  _d u )
159, 10, 11, 14fmptco 5691 . . . . . . . . . . 11  |-  ( ph  ->  ( ( v  e.  ( M (,) N
)  |->  S. ( M (,) v ) C  _d u )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) )  =  ( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u ) )
16 eqid 2283 . . . . . . . . . . . . . 14  |-  ( x  e.  ( X [,] Y )  |->  A )  =  ( x  e.  ( X [,] Y
)  |->  A )
179, 16fmptd 5684 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( M (,) N
) )
18 ioossicc 10735 . . . . . . . . . . . . . . . 16  |-  ( M (,) N )  C_  ( M [,] N )
19 itgsubst.z . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Z  e.  RR* )
20 itgsubst.w . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  W  e.  RR* )
21 itgsubst.m . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  M  e.  ( Z (,) W ) )
22 eliooord 10710 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  ( Z (,) W )  ->  ( Z  <  M  /\  M  <  W ) )
2321, 22syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( Z  <  M  /\  M  <  W ) )
2423simpld 445 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Z  <  M )
25 itgsubst.n . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  ( Z (,) W ) )
26 eliooord 10710 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ( Z (,) W )  ->  ( Z  <  N  /\  N  <  W ) )
2725, 26syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( Z  <  N  /\  N  <  W ) )
2827simprd 449 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  <  W )
29 iccssioo 10719 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Z  e.  RR*  /\  W  e.  RR* )  /\  ( Z  <  M  /\  N  <  W ) )  ->  ( M [,] N )  C_  ( Z (,) W ) )
3019, 20, 24, 28, 29syl22anc 1183 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M [,] N
)  C_  ( Z (,) W ) )
3118, 30syl5ss 3190 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M (,) N
)  C_  ( Z (,) W ) )
32 ioossre 10712 . . . . . . . . . . . . . . . . 17  |-  ( Z (,) W )  C_  RR
3332a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Z (,) W
)  C_  RR )
3433, 5syl6ss 3191 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Z (,) W
)  C_  CC )
3531, 34sstrd 3189 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M (,) N
)  C_  CC )
36 itgsubst.a . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
37 cncffvrn 18402 . . . . . . . . . . . . . 14  |-  ( ( ( M (,) N
)  C_  CC  /\  (
x  e.  ( X [,] Y )  |->  A )  e.  ( ( X [,] Y )
-cn-> ( Z (,) W
) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A )  e.  ( ( X [,] Y ) -cn-> ( M (,) N ) )  <-> 
( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( M (,) N
) ) )
3835, 36, 37syl2anc 642 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  A )  e.  ( ( X [,] Y ) -cn-> ( M (,) N ) )  <-> 
( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( M (,) N
) ) )
3917, 38mpbird 223 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( M (,) N ) ) )
4018sseli 3176 . . . . . . . . . . . . . . 15  |-  ( v  e.  ( M (,) N )  ->  v  e.  ( M [,] N
) )
4132, 25sseldi 3178 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  N  e.  RR )
4241rexrd 8881 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  e.  RR* )
4342adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  N  e.  RR* )
4432, 21sseldi 3178 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  M  e.  RR )
45 elicc2 10715 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( v  e.  ( M [,] N )  <-> 
( v  e.  RR  /\  M  <_  v  /\  v  <_  N ) ) )
4644, 41, 45syl2anc 642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( v  e.  ( M [,] N )  <-> 
( v  e.  RR  /\  M  <_  v  /\  v  <_  N ) ) )
4746biimpa 470 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( v  e.  RR  /\  M  <_ 
v  /\  v  <_  N ) )
4847simp3d 969 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  v  <_  N )
49 iooss2 10692 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  RR*  /\  v  <_  N )  ->  ( M (,) v )  C_  ( M (,) N ) )
5043, 48, 49syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( M (,) v )  C_  ( M (,) N ) )
5150sselda 3180 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( M [,] N
) )  /\  u  e.  ( M (,) v
) )  ->  u  e.  ( M (,) N
) )
5231sselda 3180 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  ( M (,) N ) )  ->  u  e.  ( Z (,) W ) )
53 itgsubst.c . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC ) )
54 cncff 18397 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( u  e.  ( Z (,) W )  |->  C )  e.  ( ( Z (,) W )
-cn-> CC )  ->  (
u  e.  ( Z (,) W )  |->  C ) : ( Z (,) W ) --> CC )
5553, 54syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C ) : ( Z (,) W ) --> CC )
56 eqid 2283 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  e.  ( Z (,) W )  |->  C )  =  ( u  e.  ( Z (,) W
)  |->  C )
5756fmpt 5681 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. u  e.  ( Z (,) W ) C  e.  CC  <->  ( u  e.  ( Z (,) W
)  |->  C ) : ( Z (,) W
) --> CC )
5855, 57sylibr 203 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A. u  e.  ( Z (,) W ) C  e.  CC )
5958r19.21bi 2641 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  ( Z (,) W ) )  ->  C  e.  CC )
6052, 59syldan 456 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  ( M (,) N ) )  ->  C  e.  CC )
6160adantlr 695 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( M [,] N
) )  /\  u  e.  ( M (,) N
) )  ->  C  e.  CC )
6251, 61syldan 456 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  ( M [,] N
) )  /\  u  e.  ( M (,) v
) )  ->  C  e.  CC )
63 ioombl 18922 . . . . . . . . . . . . . . . . . 18  |-  ( M (,) v )  e. 
dom  vol
6463a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( M (,) v )  e.  dom  vol )
6518a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M (,) N
)  C_  ( M [,] N ) )
66 ioombl 18922 . . . . . . . . . . . . . . . . . . . 20  |-  ( M (,) N )  e. 
dom  vol
6766a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M (,) N
)  e.  dom  vol )
6830sselda 3180 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  u  e.  ( M [,] N ) )  ->  u  e.  ( Z (,) W ) )
6968, 59syldan 456 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  ( M [,] N ) )  ->  C  e.  CC )
70 resmpt 5000 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M [,] N ) 
C_  ( Z (,) W )  ->  (
( u  e.  ( Z (,) W ) 
|->  C )  |`  ( M [,] N ) )  =  ( u  e.  ( M [,] N
)  |->  C ) )
7130, 70syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  |`  ( M [,] N ) )  =  ( u  e.  ( M [,] N )  |->  C ) )
72 rescncf 18401 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M [,] N ) 
C_  ( Z (,) W )  ->  (
( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC )  ->  (
( u  e.  ( Z (,) W ) 
|->  C )  |`  ( M [,] N ) )  e.  ( ( M [,] N ) -cn-> CC ) ) )
7330, 53, 72sylc 56 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  |`  ( M [,] N ) )  e.  ( ( M [,] N )
-cn-> CC ) )
7471, 73eqeltrrd 2358 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( u  e.  ( M [,] N ) 
|->  C )  e.  ( ( M [,] N
) -cn-> CC ) )
75 cniccibl 19195 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  (
u  e.  ( M [,] N )  |->  C )  e.  ( ( M [,] N )
-cn-> CC ) )  -> 
( u  e.  ( M [,] N ) 
|->  C )  e.  L ^1 )
7644, 41, 74, 75syl3anc 1182 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( u  e.  ( M [,] N ) 
|->  C )  e.  L ^1 )
7765, 67, 69, 76iblss 19159 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( u  e.  ( M (,) N ) 
|->  C )  e.  L ^1 )
7877adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( u  e.  ( M (,) N
)  |->  C )  e.  L ^1 )
7950, 64, 61, 78iblss 19159 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( u  e.  ( M (,) v
)  |->  C )  e.  L ^1 )
8062, 79itgcl 19138 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  S. ( M (,) v ) C  _d u  e.  CC )
8140, 80sylan2 460 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( M (,) N ) )  ->  S. ( M (,) v ) C  _d u  e.  CC )
82 eqid 2283 . . . . . . . . . . . . . 14  |-  ( v  e.  ( M (,) N )  |->  S. ( M (,) v ) C  _d u )  =  ( v  e.  ( M (,) N
)  |->  S. ( M (,) v ) C  _d u )
8381, 82fmptd 5684 . . . . . . . . . . . . 13  |-  ( ph  ->  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u ) : ( M (,) N ) --> CC )
8431, 32syl6ss 3191 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M (,) N
)  C_  RR )
85 fveq2 5525 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  u  ->  (
( u  e.  ( M (,) N ) 
|->  C ) `  t
)  =  ( ( u  e.  ( M (,) N )  |->  C ) `  u ) )
86 nfmpt1 4109 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ u
( u  e.  ( M (,) N ) 
|->  C )
87 nfcv 2419 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ u
t
8886, 87nffv 5532 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ u
( ( u  e.  ( M (,) N
)  |->  C ) `  t )
89 nfcv 2419 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ t
( ( u  e.  ( M (,) N
)  |->  C ) `  u )
9085, 88, 89cbvitg 19130 . . . . . . . . . . . . . . . . . . 19  |-  S. ( M (,) v ) ( ( u  e.  ( M (,) N
)  |->  C ) `  t )  _d t  =  S. ( M (,) v ) ( ( u  e.  ( M (,) N ) 
|->  C ) `  u
)  _d u
91 eqid 2283 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  e.  ( M (,) N )  |->  C )  =  ( u  e.  ( M (,) N
)  |->  C )
9291fvmpt2 5608 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( u  e.  ( M (,) N )  /\  C  e.  CC )  ->  ( ( u  e.  ( M (,) N
)  |->  C ) `  u )  =  C )
9351, 62, 92syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  v  e.  ( M [,] N
) )  /\  u  e.  ( M (,) v
) )  ->  (
( u  e.  ( M (,) N ) 
|->  C ) `  u
)  =  C )
9493itgeq2dv 19136 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  S. ( M (,) v ) ( ( u  e.  ( M (,) N ) 
|->  C ) `  u
)  _d u  =  S. ( M (,) v ) C  _d u )
9590, 94syl5eq 2327 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  S. ( M (,) v ) ( ( u  e.  ( M (,) N ) 
|->  C ) `  t
)  _d t  =  S. ( M (,) v ) C  _d u )
9695mpteq2dva 4106 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( v  e.  ( M [,] N ) 
|->  S. ( M (,) v ) ( ( u  e.  ( M (,) N )  |->  C ) `  t )  _d t )  =  ( v  e.  ( M [,] N ) 
|->  S. ( M (,) v ) C  _d u ) )
9796oveq2d 5874 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M [,] N )  |->  S. ( M (,) v
) ( ( u  e.  ( M (,) N )  |->  C ) `
 t )  _d t ) )  =  ( RR  _D  (
v  e.  ( M [,] N )  |->  S. ( M (,) v
) C  _d u ) ) )
98 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ( M [,] N )  |->  S. ( M (,) v ) ( ( u  e.  ( M (,) N
)  |->  C ) `  t )  _d t )  =  ( v  e.  ( M [,] N )  |->  S. ( M (,) v ) ( ( u  e.  ( M (,) N
)  |->  C ) `  t )  _d t )
993rexrd 8881 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  X  e.  RR* )
1004rexrd 8881 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  Y  e.  RR* )
101 lbicc2 10752 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  X  e.  ( X [,] Y
) )
10299, 100, 1, 101syl3anc 1182 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  X  e.  ( X [,] Y ) )
103 n0i 3460 . . . . . . . . . . . . . . . . . . . . 21  |-  ( X  e.  ( X [,] Y )  ->  -.  ( X [,] Y )  =  (/) )
104102, 103syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  -.  ( X [,] Y )  =  (/) )
105 feq3 5377 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M (,) N )  =  (/)  ->  ( ( x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( M (,) N )  <-> 
( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) -->
(/) ) )
10617, 105syl5ibcom 211 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( M (,) N )  =  (/)  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) -->
(/) ) )
107 f00 5426 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> (/)  <->  (
( x  e.  ( X [,] Y ) 
|->  A )  =  (/)  /\  ( X [,] Y
)  =  (/) ) )
108107simprbi 450 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> (/)  ->  ( X [,] Y
)  =  (/) )
109106, 108syl6 29 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( M (,) N )  =  (/)  ->  ( X [,] Y
)  =  (/) ) )
110104, 109mtod 168 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  -.  ( M (,) N )  =  (/) )
11144rexrd 8881 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  e.  RR* )
112 ioo0 10681 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  RR*  /\  N  e.  RR* )  ->  (
( M (,) N
)  =  (/)  <->  N  <_  M ) )
113111, 42, 112syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( M (,) N )  =  (/)  <->  N  <_  M ) )
114110, 113mtbid 291 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  -.  N  <_  M
)
11541, 44letrid 8969 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( N  <_  M  \/  M  <_  N ) )
116115ord 366 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( -.  N  <_  M  ->  M  <_  N
) )
117114, 116mpd 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  <_  N )
118 resmpt 5000 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M (,) N ) 
C_  ( M [,] N )  ->  (
( u  e.  ( M [,] N ) 
|->  C )  |`  ( M (,) N ) )  =  ( u  e.  ( M (,) N
)  |->  C ) )
11918, 118ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ( M [,] N )  |->  C )  |`  ( M (,) N ) )  =  ( u  e.  ( M (,) N ) 
|->  C )
120 rescncf 18401 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M (,) N ) 
C_  ( M [,] N )  ->  (
( u  e.  ( M [,] N ) 
|->  C )  e.  ( ( M [,] N
) -cn-> CC )  ->  (
( u  e.  ( M [,] N ) 
|->  C )  |`  ( M (,) N ) )  e.  ( ( M (,) N ) -cn-> CC ) ) )
12118, 74, 120mpsyl 59 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( u  e.  ( M [,] N
)  |->  C )  |`  ( M (,) N ) )  e.  ( ( M (,) N )
-cn-> CC ) )
122119, 121syl5eqelr 2368 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( u  e.  ( M (,) N ) 
|->  C )  e.  ( ( M (,) N
) -cn-> CC ) )
12398, 44, 41, 117, 122, 77ftc1cn 19390 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M [,] N )  |->  S. ( M (,) v
) ( ( u  e.  ( M (,) N )  |->  C ) `
 t )  _d t ) )  =  ( u  e.  ( M (,) N ) 
|->  C ) )
12430, 32syl6ss 3191 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M [,] N
)  C_  RR )
125 eqid 2283 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
126125tgioo2 18309 . . . . . . . . . . . . . . . . 17  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
127 iccntr 18326 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( M [,] N ) )  =  ( M (,) N
) )
12844, 41, 127syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( M [,] N ) )  =  ( M (,) N
) )
1296, 124, 80, 126, 125, 128dvmptntr 19320 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M [,] N )  |->  S. ( M (,) v
) C  _d u ) )  =  ( RR  _D  ( v  e.  ( M (,) N )  |->  S. ( M (,) v ) C  _d u ) ) )
13097, 123, 1293eqtr3rd 2324 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M (,) N )  |->  S. ( M (,) v
) C  _d u ) )  =  ( u  e.  ( M (,) N )  |->  C ) )
131130dmeqd 4881 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( RR  _D  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u ) )  =  dom  ( u  e.  ( M (,) N
)  |->  C ) )
13260, 91fmptd 5684 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( u  e.  ( M (,) N ) 
|->  C ) : ( M (,) N ) --> CC )
133 fdm 5393 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ( M (,) N )  |->  C ) : ( M (,) N ) --> CC 
->  dom  ( u  e.  ( M (,) N
)  |->  C )  =  ( M (,) N
) )
134132, 133syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( u  e.  ( M (,) N
)  |->  C )  =  ( M (,) N
) )
135131, 134eqtrd 2315 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  ( RR  _D  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u ) )  =  ( M (,) N
) )
136 dvcn 19270 . . . . . . . . . . . . 13  |-  ( ( ( RR  C_  CC  /\  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u ) : ( M (,) N ) --> CC  /\  ( M (,) N )  C_  RR )  /\  dom  ( RR  _D  ( v  e.  ( M (,) N
)  |->  S. ( M (,) v ) C  _d u ) )  =  ( M (,) N ) )  -> 
( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u )  e.  ( ( M (,) N
) -cn-> CC ) )
1376, 83, 84, 135, 136syl31anc 1185 . . . . . . . . . . . 12  |-  ( ph  ->  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u )  e.  ( ( M (,) N
) -cn-> CC ) )
13839, 137cncfco 18411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( v  e.  ( M (,) N
)  |->  S. ( M (,) v ) C  _d u )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) )  e.  ( ( X [,] Y ) -cn-> CC ) )
13915, 138eqeltrrd 2358 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u )  e.  ( ( X [,] Y
) -cn-> CC ) )
140 cncff 18397 . . . . . . . . . 10  |-  ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u )  e.  ( ( X [,] Y )
-cn-> CC )  ->  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) : ( X [,] Y ) --> CC )
141139, 140syl 15 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u ) : ( X [,] Y ) --> CC )
142 eqid 2283 . . . . . . . . . 10  |-  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u )  =  ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u )
143142fmpt 5681 . . . . . . . . 9  |-  ( A. x  e.  ( X [,] Y ) S. ( M (,) A ) C  _d u  e.  CC  <->  ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) : ( X [,] Y
) --> CC )
144141, 143sylibr 203 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( X [,] Y ) S. ( M (,) A ) C  _d u  e.  CC )
145144r19.21bi 2641 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  S. ( M (,) A ) C  _d u  e.  CC )
146 iccntr 18326 . . . . . . . 8  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) )  =  ( X (,) Y
) )
1473, 4, 146syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) )  =  ( X (,) Y
) )
1486, 8, 145, 126, 125, 147dvmptntr 19320 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  S. ( M (,) A ) C  _d u ) ) )
149 reex 8828 . . . . . . . . 9  |-  RR  e.  _V
150149prid1 3734 . . . . . . . 8  |-  RR  e.  { RR ,  CC }
151150a1i 10 . . . . . . 7  |-  ( ph  ->  RR  e.  { RR ,  CC } )
152 ioossicc 10735 . . . . . . . . 9  |-  ( X (,) Y )  C_  ( X [,] Y )
153152sseli 3176 . . . . . . . 8  |-  ( x  e.  ( X (,) Y )  ->  x  e.  ( X [,] Y
) )
154153, 9sylan2 460 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  ( M (,) N ) )
155 itgsubst.b . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L ^1 ) )
156 elin 3358 . . . . . . . . . . . 12  |-  ( ( x  e.  ( X (,) Y )  |->  B )  e.  ( ( ( X (,) Y
) -cn-> CC )  i^i  L ^1 )  <->  ( ( x  e.  ( X (,) Y )  |->  B )  e.  ( ( X (,) Y ) -cn-> CC )  /\  ( x  e.  ( X (,) Y )  |->  B )  e.  L ^1 ) )
157155, 156sylib 188 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  ( X (,) Y
)  |->  B )  e.  ( ( X (,) Y ) -cn-> CC )  /\  ( x  e.  ( X (,) Y
)  |->  B )  e.  L ^1 ) )
158157simpld 445 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( X (,) Y
) -cn-> CC ) )
159 cncff 18397 . . . . . . . . . 10  |-  ( ( x  e.  ( X (,) Y )  |->  B )  e.  ( ( X (,) Y )
-cn-> CC )  ->  (
x  e.  ( X (,) Y )  |->  B ) : ( X (,) Y ) --> CC )
160158, 159syl 15 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B ) : ( X (,) Y ) --> CC )
161 eqid 2283 . . . . . . . . . 10  |-  ( x  e.  ( X (,) Y )  |->  B )  =  ( x  e.  ( X (,) Y
)  |->  B )
162161fmpt 5681 . . . . . . . . 9  |-  ( A. x  e.  ( X (,) Y ) B  e.  CC  <->  ( x  e.  ( X (,) Y
)  |->  B ) : ( X (,) Y
) --> CC )
163160, 162sylibr 203 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( X (,) Y ) B  e.  CC )
164163r19.21bi 2641 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  B  e.  CC )
165 nfcv 2419 . . . . . . . . . . 11  |-  F/_ v C
166 nfcsb1v 3113 . . . . . . . . . . 11  |-  F/_ u [_ v  /  u ]_ C
167 csbeq1a 3089 . . . . . . . . . . 11  |-  ( u  =  v  ->  C  =  [_ v  /  u ]_ C )
168165, 166, 167cbvmpt 4110 . . . . . . . . . 10  |-  ( u  e.  ( M (,) N )  |->  C )  =  ( v  e.  ( M (,) N
)  |->  [_ v  /  u ]_ C )
169168fmpt 5681 . . . . . . . . 9  |-  ( A. v  e.  ( M (,) N ) [_ v  /  u ]_ C  e.  CC  <->  ( u  e.  ( M (,) N
)  |->  C ) : ( M (,) N
) --> CC )
170132, 169sylibr 203 . . . . . . . 8  |-  ( ph  ->  A. v  e.  ( M (,) N )
[_ v  /  u ]_ C  e.  CC )
171170r19.21bi 2641 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( M (,) N ) )  ->  [_ v  /  u ]_ C  e.  CC )
17232, 5sstri 3188 . . . . . . . . . 10  |-  ( Z (,) W )  C_  CC
173 cncff 18397 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( X [,] Y )  |->  A )  e.  ( ( X [,] Y )
-cn-> ( Z (,) W
) )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )
17436, 173syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( Z (,) W
) )
17516fmpt 5681 . . . . . . . . . . . 12  |-  ( A. x  e.  ( X [,] Y ) A  e.  ( Z (,) W
)  <->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( Z (,) W ) )
176174, 175sylibr 203 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  ( X [,] Y ) A  e.  ( Z (,) W ) )
177176r19.21bi 2641 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( Z (,) W ) )
178172, 177sseldi 3178 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  CC )
1796, 8, 178, 126, 125, 147dvmptntr 19320 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  A ) ) )
180 itgsubst.da . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
181179, 180eqtr3d 2317 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
182130, 168syl6eq 2331 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M (,) N )  |->  S. ( M (,) v
) C  _d u ) )  =  ( v  e.  ( M (,) N )  |->  [_ v  /  u ]_ C
) )
183 csbeq1 3084 . . . . . . 7  |-  ( v  =  A  ->  [_ v  /  u ]_ C  = 
[_ A  /  u ]_ C )
184151, 151, 154, 164, 81, 171, 181, 182, 14, 183dvmptco 19321 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  S. ( M (,) A
) C  _d u ) )  =  ( x  e.  ( X (,) Y )  |->  (
[_ A  /  u ]_ C  x.  B
) ) )
185 nfcvd 2420 . . . . . . . . . 10  |-  ( A  e.  ( M (,) N )  ->  F/_ u E )
186 itgsubst.e . . . . . . . . . 10  |-  ( u  =  A  ->  C  =  E )
187185, 186csbiegf 3121 . . . . . . . . 9  |-  ( A  e.  ( M (,) N )  ->  [_ A  /  u ]_ C  =  E )
188154, 187syl 15 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  [_ A  /  u ]_ C  =  E )
189188oveq1d 5873 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( [_ A  /  u ]_ C  x.  B )  =  ( E  x.  B ) )
190189mpteq2dva 4106 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( [_ A  /  u ]_ C  x.  B
) )  =  ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) ) )
191148, 184, 1903eqtrd 2319 . . . . 5  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  =  ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) ) )
192125mulcn 18371 . . . . . . 7  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
193192a1i 10 . . . . . 6  |-  ( ph  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
194 resmpt 5000 . . . . . . . 8  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  E )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y
)  |->  E ) )
195152, 194ax-mp 8 . . . . . . 7  |-  ( ( x  e.  ( X [,] Y )  |->  E )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y ) 
|->  E )
196 eqidd 2284 . . . . . . . . . 10  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  =  ( u  e.  ( Z (,) W )  |->  C ) )
197177, 10, 196, 186fmptco 5691 . . . . . . . . 9  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) )  =  ( x  e.  ( X [,] Y ) 
|->  E ) )
19836, 53cncfco 18411 . . . . . . . . 9  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) )  e.  ( ( X [,] Y ) -cn-> CC ) )
199197, 198eqeltrrd 2358 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  E )  e.  ( ( X [,] Y
) -cn-> CC ) )
200 rescncf 18401 . . . . . . . 8  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  E )  e.  ( ( X [,] Y
) -cn-> CC )  ->  (
( x  e.  ( X [,] Y ) 
|->  E )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y ) -cn-> CC ) ) )
201152, 199, 200mpsyl 59 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  E )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y )
-cn-> CC ) )
202195, 201syl5eqelr 2368 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  E )  e.  ( ( X (,) Y
) -cn-> CC ) )
203125, 193, 202, 158cncfmpt2f 18418 . . . . 5  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( E  x.  B
) )  e.  ( ( X (,) Y
) -cn-> CC ) )
204191, 203eqeltrd 2357 . . . 4  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  e.  ( ( X (,) Y
) -cn-> CC ) )
205 ioombl 18922 . . . . . . . 8  |-  ( X (,) Y )  e. 
dom  vol
206205a1i 10 . . . . . . 7  |-  ( ph  ->  ( X (,) Y
)  e.  dom  vol )
207 fco 5398 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ( Z (,) W ) 
|->  C ) : ( Z (,) W ) --> CC  /\  ( x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )  ->  ( ( u  e.  ( Z (,) W )  |->  C )  o.  ( x  e.  ( X [,] Y
)  |->  A ) ) : ( X [,] Y ) --> CC )
20855, 174, 207syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) ) : ( X [,] Y
) --> CC )
209197feq1d 5379 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( u  e.  ( Z (,) W )  |->  C )  o.  ( x  e.  ( X [,] Y
)  |->  A ) ) : ( X [,] Y ) --> CC  <->  ( x  e.  ( X [,] Y
)  |->  E ) : ( X [,] Y
) --> CC ) )
210208, 209mpbid 201 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  E ) : ( X [,] Y ) --> CC )
211 eqid 2283 . . . . . . . . . . 11  |-  ( x  e.  ( X [,] Y )  |->  E )  =  ( x  e.  ( X [,] Y
)  |->  E )
212211fmpt 5681 . . . . . . . . . 10  |-  ( A. x  e.  ( X [,] Y ) E  e.  CC  <->  ( x  e.  ( X [,] Y
)  |->  E ) : ( X [,] Y
) --> CC )
213210, 212sylibr 203 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  ( X [,] Y ) E  e.  CC )
214213r19.21bi 2641 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  E  e.  CC )
215153, 214sylan2 460 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  E  e.  CC )
216 eqidd 2284 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  E )  =  ( x  e.  ( X (,) Y )  |->  E ) )
217 eqidd 2284 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  =  ( x  e.  ( X (,) Y )  |->  B ) )
218206, 215, 164, 216, 217offval2 6095 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X (,) Y
)  |->  E )  o F  x.  ( x  e.  ( X (,) Y )  |->  B ) )  =  ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) ) )
219191, 218eqtr4d 2318 . . . . 5  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  =  ( ( x  e.  ( X (,) Y ) 
|->  E )  o F  x.  ( x  e.  ( X (,) Y
)  |->  B ) ) )
220152a1i 10 . . . . . . . 8  |-  ( ph  ->  ( X (,) Y
)  C_  ( X [,] Y ) )
221 cniccibl 19195 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  Y  e.  RR  /\  (
x  e.  ( X [,] Y )  |->  E )  e.  ( ( X [,] Y )
-cn-> CC ) )  -> 
( x  e.  ( X [,] Y ) 
|->  E )  e.  L ^1 )
2223, 4, 199, 221syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  E )  e.  L ^1 )
223220, 206, 214, 222iblss 19159 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  E )  e.  L ^1 )
224 iblmbf 19122 . . . . . . 7  |-  ( ( x  e.  ( X (,) Y )  |->  E )  e.  L ^1 
->  ( x  e.  ( X (,) Y ) 
|->  E )  e. MblFn )
225223, 224syl 15 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  E )  e. MblFn )
226157simprd 449 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  L ^1 )
227 cniccbdd 18821 . . . . . . . 8  |-  ( ( X  e.  RR  /\  Y  e.  RR  /\  (
x  e.  ( X [,] Y )  |->  E )  e.  ( ( X [,] Y )
-cn-> CC ) )  ->  E. y  e.  RR  A. z  e.  ( X [,] Y ) ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y )
2283, 4, 199, 227syl3anc 1182 . . . . . . 7  |-  ( ph  ->  E. y  e.  RR  A. z  e.  ( X [,] Y ) ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y )
229 ssralv 3237 . . . . . . . . . 10  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  ( A. z  e.  ( X [,] Y ) ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y  ->  A. z  e.  ( X (,) Y ) ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y )
)
230152, 229ax-mp 8 . . . . . . . . 9  |-  ( A. z  e.  ( X [,] Y ) ( abs `  ( ( x  e.  ( X [,] Y
)  |->  E ) `  z ) )  <_ 
y  ->  A. z  e.  ( X (,) Y
) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y
)
231 eqid 2283 . . . . . . . . . . . . 13  |-  ( x  e.  ( X (,) Y )  |->  E )  =  ( x  e.  ( X (,) Y
)  |->  E )
232215, 231fmptd 5684 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  E ) : ( X (,) Y ) --> CC )
233 fdm 5393 . . . . . . . . . . . 12  |-  ( ( x  e.  ( X (,) Y )  |->  E ) : ( X (,) Y ) --> CC 
->  dom  ( x  e.  ( X (,) Y
)  |->  E )  =  ( X (,) Y
) )
234232, 233syl 15 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( x  e.  ( X (,) Y
)  |->  E )  =  ( X (,) Y
) )
235234raleqdv 2742 . . . . . . . . . 10  |-  ( ph  ->  ( A. z  e. 
dom  ( x  e.  ( X (,) Y
)  |->  E ) ( abs `  ( ( x  e.  ( X (,) Y )  |->  E ) `  z ) )  <_  y  <->  A. z  e.  ( X (,) Y
) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
) )
236195fveq1i 5526 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ( X [,] Y ) 
|->  E )  |`  ( X (,) Y ) ) `
 z )  =  ( ( x  e.  ( X (,) Y
)  |->  E ) `  z )
237 fvres 5542 . . . . . . . . . . . . . 14  |-  ( z  e.  ( X (,) Y )  ->  (
( ( x  e.  ( X [,] Y
)  |->  E )  |`  ( X (,) Y ) ) `  z )  =  ( ( x  e.  ( X [,] Y )  |->  E ) `
 z ) )
238236, 237syl5eqr 2329 . . . . . . . . . . . . 13  |-  ( z  e.  ( X (,) Y )  ->  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
)  =  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )
239238fveq2d 5529 . . . . . . . . . . . 12  |-  ( z  e.  ( X (,) Y )  ->  ( abs `  ( ( x  e.  ( X (,) Y )  |->  E ) `
 z ) )  =  ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) ) )
240239breq1d 4033 . . . . . . . . . . 11  |-  ( z  e.  ( X (,) Y )  ->  (
( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y  <->  ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y )
)
241240ralbiia 2575 . . . . . . . . . 10  |-  ( A. z  e.  ( X (,) Y ) ( abs `  ( ( x  e.  ( X (,) Y
)  |->  E ) `  z ) )  <_ 
y  <->  A. z  e.  ( X (,) Y ) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y
)
242235, 241syl6rbb 253 . . . . . . . . 9  |-  ( ph  ->  ( A. z  e.  ( X (,) Y
) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y  <->  A. z  e.  dom  (
x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
) )
243230, 242syl5ib 210 . . . . . . . 8  |-  ( ph  ->  ( A. z  e.  ( X [,] Y
) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y  ->  A. z  e.  dom  ( x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
) )
244243reximdv 2654 . . . . . . 7  |-  ( ph  ->  ( E. y  e.  RR  A. z  e.  ( X [,] Y
) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y  ->  E. y  e.  RR  A. z  e.  dom  (
x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
) )
245228, 244mpd 14 . . . . . 6  |-  ( ph  ->  E. y  e.  RR  A. z  e.  dom  (
x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
)
246 bddmulibl 19193 . . . . . 6  |-  ( ( ( x  e.  ( X (,) Y ) 
|->  E )  e. MblFn  /\  (
x  e.  ( X (,) Y )  |->  B )  e.  L ^1 
/\  E. y  e.  RR  A. z  e.  dom  (
x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
)  ->  ( (
x  e.  ( X (,) Y )  |->  E )  o F  x.  ( x  e.  ( X (,) Y )  |->  B ) )  e.  L ^1 )
247225, 226, 245, 246syl3anc 1182 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( X (,) Y
)  |->  E )  o F  x.  ( x  e.  ( X (,) Y )  |->  B ) )  e.  L ^1 )
248219, 247eqeltrd 2357 . . . 4  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  e.  L ^1 )
2493, 4, 1, 204, 248, 139ftc2 19391 . . 3  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  t )  _d t  =  ( ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  Y )  -  (
( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u ) `  X
) ) )
250 fveq2 5525 . . . . 5  |-  ( t  =  x  ->  (
( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  t
)  =  ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  x ) )
251 nfcv 2419 . . . . . . 7  |-  F/_ x RR
252 nfcv 2419 . . . . . . 7  |-  F/_ x  _D
253 nfmpt1 4109 . . . . . . 7  |-  F/_ x
( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u )
254251, 252, 253nfov 5881 . . . . . 6  |-  F/_ x
( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )
255 nfcv 2419 . . . . . 6  |-  F/_ x
t
256254, 255nffv 5532 . . . . 5  |-  F/_ x
( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  t
)
257 nfcv 2419 . . . . 5  |-  F/_ t
( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  x
)
258250, 256, 257cbvitg 19130 . . . 4  |-  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  t
)  _d t  =  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  x )  _d x
259191fveq1d 5527 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  x
)  =  ( ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) ) `  x ) )
260 ovex 5883 . . . . . . 7  |-  ( E  x.  B )  e. 
_V
261 eqid 2283 . . . . . . . 8  |-  ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) )  =  ( x  e.  ( X (,) Y
)  |->  ( E  x.  B ) )
262261fvmpt2 5608 . . . . . . 7  |-  ( ( x  e.  ( X (,) Y )  /\  ( E  x.  B
)  e.  _V )  ->  ( ( x  e.  ( X (,) Y
)  |->  ( E  x.  B ) ) `  x )  =  ( E  x.  B ) )
263260, 262mpan2 652 . . . . . 6  |-  ( x  e.  ( X (,) Y )  ->  (
( x  e.  ( X (,) Y ) 
|->  ( E  x.  B
) ) `  x
)  =  ( E  x.  B ) )
264259, 263sylan9eq 2335 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( ( RR  _D  ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) ) `
 x )  =  ( E  x.  B
) )
265264itgeq2dv 19136 . . . 4  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  x )  _d x  =  S. ( X (,) Y
) ( E  x.  B )  _d x )
266258, 265syl5eq 2327 . . 3  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  t )  _d t  =  S. ( X (,) Y
) ( E  x.  B )  _d x )
26718, 9sseldi 3178 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( M [,] N ) )
268 elicc2 10715 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( A  e.  ( M [,] N )  <-> 
( A  e.  RR  /\  M  <_  A  /\  A  <_  N ) ) )
26944, 41, 268syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  e.  ( M [,] N )  <-> 
( A  e.  RR  /\  M  <_  A  /\  A  <_  N ) ) )
270269adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( A  e.  ( M [,] N
)  <->  ( A  e.  RR  /\  M  <_  A  /\  A  <_  N
) ) )
271267, 270mpbid 201 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( A  e.  RR  /\  M  <_  A  /\  A  <_  N
) )
272271simp2d 968 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  M  <_  A )
273272ditgpos 19206 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  S__ [ M  ->  A ] C  _d u  =  S. ( M (,) A ) C  _d u )
274273mpteq2dva 4106 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  S__ [ M  ->  A ] C  _d u )  =  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) )
275274fveq1d 5527 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S__ [ M  ->  A ] C  _d u ) `  Y )  =  ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) `
 Y ) )
276 ubicc2 10753 . . . . . . . 8  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  Y  e.  ( X [,] Y
) )
27799, 100, 1, 276syl3anc 1182 . . . . . . 7  |-  ( ph  ->  Y  e.  ( X [,] Y ) )
278 itgsubst.l . . . . . . . . 9  |-  ( x  =  Y  ->  A  =  L )
279 ditgeq2 19199 . . . . . . . . 9  |-  ( A  =  L  ->  S__ [ M  ->  A ] C  _d u  =  S__
[ M  ->  L ] C  _d u
)
280278, 279syl 15 . . . . . . . 8  |-  ( x  =  Y  ->  S__ [ M  ->  A ] C  _d u  =  S__
[ M  ->  L ] C  _d u
)
281 eqid 2283 . . . . . . . 8  |-  ( x  e.  ( X [,] Y )  |->  S__ [ M  ->  A ] C  _d u )  =  ( x  e.  ( X [,] Y )  |->  S__
[ M  ->  A ] C  _d u
)
282 ditgex 19202 . . . . . . . 8  |-  S__ [ M  ->  L ] C  _d u  e.  _V
283280, 281, 282fvmpt 5602 . . . . . . 7  |-  ( Y  e.  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  S__ [ M  ->  A ] C  _d u ) `  Y )  =  S__ [ M  ->  L ] C  _d u )
284277, 283syl 15 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S__ [ M  ->  A ] C  _d u ) `  Y )  =  S__ [ M  ->  L ] C  _d u )
285275, 284eqtr3d 2317 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  Y )  =  S__
[ M  ->  L ] C  _d u
)
286274fveq1d 5527 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S__ [ M  ->  A ] C  _d u ) `  X )  =  ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) `
 X ) )
287 itgsubst.k . . . . . . . . 9  |-  ( x  =  X  ->  A  =  K )
288 ditgeq2 19199 . . . . . . . . 9  |-  ( A  =  K  ->  S__ [ M  ->  A ] C  _d u  =  S__
[ M  ->  K ] C  _d u
)
289287, 288syl 15 . . . . . . . 8  |-  ( x  =  X  ->  S__ [ M  ->  A ] C  _d u  =  S__
[ M  ->  K ] C  _d u
)
290 ditgex 19202 . . . . . . . 8  |-  S__ [ M  ->  K ] C  _d u  e.  _V
291289, 281, 290fvmpt 5602 . . . . . . 7  |-  ( X  e.  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  S__ [ M  ->  A ] C  _d u ) `  X )  =  S__ [ M  ->  K ] C  _d u )
292102, 291syl 15 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S__ [ M  ->  A ] C  _d u ) `  X )  =  S__ [ M  ->  K ] C  _d u )
293286, 292eqtr3d 2317 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  X )  =  S__
[ M  ->  K ] C  _d u
)
294285, 293oveq12d 5876 . . . 4  |-  ( ph  ->  ( ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) `
 Y )  -  ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  X ) )  =  ( S__ [ M  ->  L ] C  _d u  -  S__ [ M  ->  K ] C  _d u ) )
295 lbicc2 10752 . . . . . . 7  |-  ( ( M  e.  RR*  /\  N  e.  RR*  /\  M  <_  N )  ->  M  e.  ( M [,] N
) )
296111, 42, 117, 295syl3anc 1182 . . . . . 6  |-  ( ph  ->  M  e.  ( M [,] N ) )
297267ralrimiva 2626 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( X [,] Y ) A  e.  ( M [,] N ) )
298287eleq1d 2349 . . . . . . . 8  |-  ( x  =  X  ->  ( A  e.  ( M [,] N )  <->  K  e.  ( M [,] N ) ) )
299298rspcv 2880 . . . . . . 7  |-  ( X  e.  ( X [,] Y )  ->  ( A. x  e.  ( X [,] Y ) A  e.  ( M [,] N )  ->  K  e.  ( M [,] N
) ) )
300102, 297, 299sylc 56 . . . . . 6  |-  ( ph  ->  K  e.  ( M [,] N ) )
301278eleq1d 2349 . . . . . . . 8  |-  ( x  =  Y  ->  ( A  e.  ( M [,] N )  <->  L  e.  ( M [,] N ) ) )
302301rspcv 2880 . . . . . . 7  |-  ( Y  e.  ( X [,] Y )  ->  ( A. x  e.  ( X [,] Y ) A  e.  ( M [,] N )  ->  L  e.  ( M [,] N
) ) )
303277, 297, 302sylc 56 . . . . . 6  |-  ( ph  ->  L  e.  ( M [,] N ) )
30444, 41, 296, 300, 303, 60, 77ditgsplit 19211 . . . . 5  |-  ( ph  ->  S__ [ M  ->  L ] C  _d u  =  ( S__ [ M  ->  K ] C  _d u  +  S__ [ K  ->  L ] C  _d u ) )
305304oveq1d 5873 . . . 4  |-  ( ph  ->  ( S__ [ M  ->  L ] C  _d u  -  S__ [ M  ->  K ] C  _d u )  =  ( ( S__ [ M  ->  K ] C  _d u  +  S__ [ K  ->  L ] C  _d u )  -  S__ [ M  ->  K ] C  _d u ) )
30644, 41, 296, 300, 60, 77ditgcl 19208 . . . . 5  |-  ( ph  ->  S__ [ M  ->  K ] C  _d u  e.  CC )
30744, 41, 300, 303, 60, 77ditgcl 19208 . . . . 5  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  e.  CC )
308306, 307pncan2d 9159 . . . 4  |-  ( ph  ->  ( ( S__ [ M  ->  K ] C  _d u  +  S__ [ K  ->  L ] C  _d u )  -  S__ [ M  ->  K ] C  _d u
)  =  S__ [ K  ->  L ] C  _d u )
309294, 305, 3083eqtrd 2319 . . 3  |-  ( ph  ->  ( ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) `
 Y )  -  ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  X ) )  =  S__ [ K  ->  L ] C  _d u )
310249, 266, 3093eqtr3d 2323 . 2  |-  ( ph  ->  S. ( X (,) Y ) ( E  x.  B )  _d x  =  S__ [ K  ->  L ] C  _d u )
3112, 310eqtr2d 2316 1  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788   [_csb 3081    i^i cin 3151    C_ wss 3152   (/)c0 3455   {cpr 3641   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   ran crn 4690    |` cres 4691    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076   CCcc 8735   RRcr 8736    + caddc 8740    x. cmul 8742   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   (,)cioo 10656   [,]cicc 10659   abscabs 11719   TopOpenctopn 13326   topGenctg 13342  ℂfldccnfld 16377   intcnt 16754    Cn ccn 16954    tX ctx 17255   -cn->ccncf 18380   volcvol 18823  MblFncmbf 18969   L ^1cibl 18972   S.citg 18973   S__cdit 18974    _D cdv 19213
This theorem is referenced by:  itgsubst  19396
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-ovol 18824  df-vol 18825  df-mbf 18975  df-itg1 18976  df-itg2 18977  df-ibl 18978  df-itg 18979  df-ditg 18980  df-0p 19025  df-limc 19216  df-dv 19217
  Copyright terms: Public domain W3C validator