MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm2 Unicode version

Theorem itgulm2 19785
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm2.z  |-  Z  =  ( ZZ>= `  M )
itgulm2.m  |-  ( ph  ->  M  e.  ZZ )
itgulm2.c  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A )  e.  ( S
-cn-> CC ) )
itgulm2.l  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A )  e.  L ^1 )
itgulm2.u  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B ) )
itgulm2.s  |-  ( ph  ->  ( vol `  S
)  e.  RR )
Assertion
Ref Expression
itgulm2  |-  ( ph  ->  ( ( x  e.  S  |->  B )  e.  L ^1  /\  (
k  e.  Z  |->  S. S A  _d x )  ~~>  S. S B  _d x ) )
Distinct variable groups:    x, k, ph    S, k, x    k, Z, x
Allowed substitution hints:    A( x, k)    B( x, k)    M( x, k)

Proof of Theorem itgulm2
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm2.z . . 3  |-  Z  =  ( ZZ>= `  M )
2 itgulm2.m . . 3  |-  ( ph  ->  M  e.  ZZ )
3 itgulm2.l . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A )  e.  L ^1 )
4 eqid 2283 . . . 4  |-  ( k  e.  Z  |->  ( x  e.  S  |->  A ) )  =  ( k  e.  Z  |->  ( x  e.  S  |->  A ) )
53, 4fmptd 5684 . . 3  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) : Z --> L ^1 )
6 itgulm2.u . . 3  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B ) )
7 itgulm2.s . . 3  |-  ( ph  ->  ( vol `  S
)  e.  RR )
81, 2, 5, 6, 7iblulm 19783 . 2  |-  ( ph  ->  ( x  e.  S  |->  B )  e.  L ^1 )
91, 2, 5, 6, 7itgulm 19784 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `  z
)  _d z )  ~~>  S. S ( ( x  e.  S  |->  B ) `  z )  _d z )
10 nfcv 2419 . . . . . 6  |-  F/_ k S
11 nfmpt1 4109 . . . . . . . 8  |-  F/_ k
( k  e.  Z  |->  ( x  e.  S  |->  A ) )
12 nfcv 2419 . . . . . . . 8  |-  F/_ k
n
1311, 12nffv 5532 . . . . . . 7  |-  F/_ k
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n )
14 nfcv 2419 . . . . . . 7  |-  F/_ k
z
1513, 14nffv 5532 . . . . . 6  |-  F/_ k
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 z )
1610, 15nfitg 19129 . . . . 5  |-  F/_ k S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n
) `  z )  _d z
17 nfcv 2419 . . . . 5  |-  F/_ n S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x
18 fveq2 5525 . . . . . . 7  |-  ( z  =  x  ->  (
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n ) `  z )  =  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n ) `  x ) )
19 nfcv 2419 . . . . . . . . . 10  |-  F/_ x Z
20 nfmpt1 4109 . . . . . . . . . 10  |-  F/_ x
( x  e.  S  |->  A )
2119, 20nfmpt 4108 . . . . . . . . 9  |-  F/_ x
( k  e.  Z  |->  ( x  e.  S  |->  A ) )
22 nfcv 2419 . . . . . . . . 9  |-  F/_ x n
2321, 22nffv 5532 . . . . . . . 8  |-  F/_ x
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n )
24 nfcv 2419 . . . . . . . 8  |-  F/_ x
z
2523, 24nffv 5532 . . . . . . 7  |-  F/_ x
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 z )
26 nfcv 2419 . . . . . . 7  |-  F/_ z
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 x )
2718, 25, 26cbvitg 19130 . . . . . 6  |-  S. S
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 z )  _d z  =  S. S
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 x )  _d x
28 fveq2 5525 . . . . . . . . 9  |-  ( n  =  k  ->  (
( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n )  =  ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k ) )
2928fveq1d 5527 . . . . . . . 8  |-  ( n  =  k  ->  (
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n ) `  x )  =  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 k ) `  x ) )
3029adantr 451 . . . . . . 7  |-  ( ( n  =  k  /\  x  e.  S )  ->  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 x )  =  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k ) `
 x ) )
3130itgeq2dv 19136 . . . . . 6  |-  ( n  =  k  ->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n
) `  x )  _d x  =  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x )
3227, 31syl5eq 2327 . . . . 5  |-  ( n  =  k  ->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n
) `  z )  _d z  =  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x )
3316, 17, 32cbvmpt 4110 . . . 4  |-  ( n  e.  Z  |->  S. S
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 z )  _d z )  =  ( k  e.  Z  |->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x )
34 simplr 731 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  k  e.  Z )
35 ulmscl 19758 . . . . . . . . . . 11  |-  ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B )  ->  S  e.  _V )
36 mptexg 5745 . . . . . . . . . . 11  |-  ( S  e.  _V  ->  (
x  e.  S  |->  A )  e.  _V )
376, 35, 363syl 18 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  S  |->  A )  e.  _V )
3837ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
x  e.  S  |->  A )  e.  _V )
394fvmpt2 5608 . . . . . . . . 9  |-  ( ( k  e.  Z  /\  ( x  e.  S  |->  A )  e.  _V )  ->  ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k )  =  ( x  e.  S  |->  A ) )
4034, 38, 39syl2anc 642 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k )  =  ( x  e.  S  |->  A ) )
4140fveq1d 5527 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 k ) `  x )  =  ( ( x  e.  S  |->  A ) `  x
) )
42 simpr 447 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  x  e.  S )
4337ralrimivw 2627 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  Z  ( x  e.  S  |->  A )  e.  _V )
444fnmpt 5370 . . . . . . . . . . . . . . 15  |-  ( A. k  e.  Z  (
x  e.  S  |->  A )  e.  _V  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) )  Fn  Z
)
4543, 44syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) )  Fn  Z )
46 ulmf2 19763 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) )  Fn  Z  /\  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B ) )  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) : Z --> ( CC 
^m  S ) )
4745, 6, 46syl2anc 642 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) : Z --> ( CC  ^m  S ) )
484fmpt 5681 . . . . . . . . . . . . 13  |-  ( A. k  e.  Z  (
x  e.  S  |->  A )  e.  ( CC 
^m  S )  <->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) : Z --> ( CC 
^m  S ) )
4947, 48sylibr 203 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  Z  ( x  e.  S  |->  A )  e.  ( CC  ^m  S ) )
5049r19.21bi 2641 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A )  e.  ( CC 
^m  S ) )
51 elmapi 6792 . . . . . . . . . . 11  |-  ( ( x  e.  S  |->  A )  e.  ( CC 
^m  S )  -> 
( x  e.  S  |->  A ) : S --> CC )
5250, 51syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A ) : S --> CC )
53 eqid 2283 . . . . . . . . . . 11  |-  ( x  e.  S  |->  A )  =  ( x  e.  S  |->  A )
5453fmpt 5681 . . . . . . . . . 10  |-  ( A. x  e.  S  A  e.  CC  <->  ( x  e.  S  |->  A ) : S --> CC )
5552, 54sylibr 203 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  A. x  e.  S  A  e.  CC )
5655r19.21bi 2641 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  A  e.  CC )
5753fvmpt2 5608 . . . . . . . 8  |-  ( ( x  e.  S  /\  A  e.  CC )  ->  ( ( x  e.  S  |->  A ) `  x )  =  A )
5842, 56, 57syl2anc 642 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( x  e.  S  |->  A ) `  x
)  =  A )
5941, 58eqtrd 2315 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 k ) `  x )  =  A )
6059itgeq2dv 19136 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x  =  S. S A  _d x
)
6160mpteq2dva 4106 . . . 4  |-  ( ph  ->  ( k  e.  Z  |->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k ) `  x
)  _d x )  =  ( k  e.  Z  |->  S. S A  _d x ) )
6233, 61syl5eq 2327 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `  z
)  _d z )  =  ( k  e.  Z  |->  S. S A  _d x ) )
63 fveq2 5525 . . . . 5  |-  ( z  =  x  ->  (
( x  e.  S  |->  B ) `  z
)  =  ( ( x  e.  S  |->  B ) `  x ) )
64 nfmpt1 4109 . . . . . 6  |-  F/_ x
( x  e.  S  |->  B )
6564, 24nffv 5532 . . . . 5  |-  F/_ x
( ( x  e.  S  |->  B ) `  z )
66 nfcv 2419 . . . . 5  |-  F/_ z
( ( x  e.  S  |->  B ) `  x )
6763, 65, 66cbvitg 19130 . . . 4  |-  S. S
( ( x  e.  S  |->  B ) `  z )  _d z  =  S. S ( ( x  e.  S  |->  B ) `  x
)  _d x
68 simpr 447 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  S )
69 ulmcl 19760 . . . . . . . . 9  |-  ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B )  ->  ( x  e.  S  |->  B ) : S --> CC )
706, 69syl 15 . . . . . . . 8  |-  ( ph  ->  ( x  e.  S  |->  B ) : S --> CC )
71 eqid 2283 . . . . . . . . 9  |-  ( x  e.  S  |->  B )  =  ( x  e.  S  |->  B )
7271fmpt 5681 . . . . . . . 8  |-  ( A. x  e.  S  B  e.  CC  <->  ( x  e.  S  |->  B ) : S --> CC )
7370, 72sylibr 203 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  B  e.  CC )
7473r19.21bi 2641 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  CC )
7571fvmpt2 5608 . . . . . 6  |-  ( ( x  e.  S  /\  B  e.  CC )  ->  ( ( x  e.  S  |->  B ) `  x )  =  B )
7668, 74, 75syl2anc 642 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  (
( x  e.  S  |->  B ) `  x
)  =  B )
7776itgeq2dv 19136 . . . 4  |-  ( ph  ->  S. S ( ( x  e.  S  |->  B ) `  x )  _d x  =  S. S B  _d x )
7867, 77syl5eq 2327 . . 3  |-  ( ph  ->  S. S ( ( x  e.  S  |->  B ) `  z )  _d z  =  S. S B  _d x )
799, 62, 783brtr3d 4052 . 2  |-  ( ph  ->  ( k  e.  Z  |->  S. S A  _d x )  ~~>  S. S B  _d x )
808, 79jca 518 1  |-  ( ph  ->  ( ( x  e.  S  |->  B )  e.  L ^1  /\  (
k  e.  Z  |->  S. S A  _d x )  ~~>  S. S B  _d x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788   class class class wbr 4023    e. cmpt 4077    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   CCcc 8735   RRcr 8736   ZZcz 10024   ZZ>=cuz 10230    ~~> cli 11958   -cn->ccncf 18380   volcvol 18823   L ^1cibl 18972   S.citg 18973   ~~> uculm 19755
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cn 16957  df-cnp 16958  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-ovol 18824  df-vol 18825  df-mbf 18975  df-itg1 18976  df-itg2 18977  df-ibl 18978  df-itg 18979  df-0p 19025  df-ulm 19756
  Copyright terms: Public domain W3C validator