MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunifval Unicode version

Theorem itunifval 8129
Description: Function value of iterated unions. EDITORIAL: The iterated unions and order types of ordered sets are split out here because they could concievably be independently useful. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
Assertion
Ref Expression
itunifval  |-  ( A  e.  V  ->  ( U `  A )  =  ( rec (
( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) )
Distinct variable group:    x, A, y
Allowed substitution hints:    U( x, y)    V( x, y)

Proof of Theorem itunifval
StepHypRef Expression
1 elex 2872 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 rdgeq2 6509 . . . 4  |-  ( x  =  A  ->  rec ( ( y  e. 
_V  |->  U. y ) ,  x )  =  rec ( ( y  e. 
_V  |->  U. y ) ,  A ) )
32reseq1d 5033 . . 3  |-  ( x  =  A  ->  ( rec ( ( y  e. 
_V  |->  U. y ) ,  x )  |`  om )  =  ( rec (
( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) )
4 ituni.u . . 3  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
5 rdgfun 6513 . . . 4  |-  Fun  rec ( ( y  e. 
_V  |->  U. y ) ,  A )
6 omex 7431 . . . 4  |-  om  e.  _V
7 resfunexg 5820 . . . 4  |-  ( ( Fun  rec ( ( y  e.  _V  |->  U. y ) ,  A
)  /\  om  e.  _V )  ->  ( rec ( ( y  e. 
_V  |->  U. y ) ,  A )  |`  om )  e.  _V )
85, 6, 7mp2an 653 . . 3  |-  ( rec ( ( y  e. 
_V  |->  U. y ) ,  A )  |`  om )  e.  _V
93, 4, 8fvmpt 5682 . 2  |-  ( A  e.  _V  ->  ( U `  A )  =  ( rec (
( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) )
101, 9syl 15 1  |-  ( A  e.  V  ->  ( U `  A )  =  ( rec (
( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1642    e. wcel 1710   _Vcvv 2864   U.cuni 3906    e. cmpt 4156   omcom 4735    |` cres 4770   Fun wfun 5328   ` cfv 5334   reccrdg 6506
This theorem is referenced by:  itunifn  8130  ituni0  8131  itunisuc  8132
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-inf2 7429
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-recs 6472  df-rdg 6507
  Copyright terms: Public domain W3C validator