MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ituniiun Unicode version

Theorem ituniiun 8048
Description: Unwrap an iterated union from the "other end". (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
Assertion
Ref Expression
ituniiun  |-  ( A  e.  V  ->  (
( U `  A
) `  suc  B )  =  U_ a  e.  A  ( ( U `
 a ) `  B ) )
Distinct variable groups:    x, A, y, a    x, B, y, a    U, a
Allowed substitution hints:    U( x, y)    V( x, y, a)

Proof of Theorem ituniiun
Dummy variables  b 
c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5525 . . . 4  |-  ( b  =  A  ->  ( U `  b )  =  ( U `  A ) )
21fveq1d 5527 . . 3  |-  ( b  =  A  ->  (
( U `  b
) `  suc  B )  =  ( ( U `
 A ) `  suc  B ) )
3 iuneq1 3918 . . 3  |-  ( b  =  A  ->  U_ a  e.  b  ( ( U `  a ) `  B )  =  U_ a  e.  A  (
( U `  a
) `  B )
)
42, 3eqeq12d 2297 . 2  |-  ( b  =  A  ->  (
( ( U `  b ) `  suc  B )  =  U_ a  e.  b  ( ( U `  a ) `  B )  <->  ( ( U `  A ) `  suc  B )  = 
U_ a  e.  A  ( ( U `  a ) `  B
) ) )
5 suceq 4457 . . . . . 6  |-  ( d  =  (/)  ->  suc  d  =  suc  (/) )
65fveq2d 5529 . . . . 5  |-  ( d  =  (/)  ->  ( ( U `  b ) `
 suc  d )  =  ( ( U `
 b ) `  suc  (/) ) )
7 fveq2 5525 . . . . . 6  |-  ( d  =  (/)  ->  ( ( U `  a ) `
 d )  =  ( ( U `  a ) `  (/) ) )
87iuneq2d 3930 . . . . 5  |-  ( d  =  (/)  ->  U_ a  e.  b  ( ( U `  a ) `  d )  =  U_ a  e.  b  (
( U `  a
) `  (/) ) )
96, 8eqeq12d 2297 . . . 4  |-  ( d  =  (/)  ->  ( ( ( U `  b
) `  suc  d )  =  U_ a  e.  b  ( ( U `
 a ) `  d )  <->  ( ( U `  b ) `  suc  (/) )  =  U_ a  e.  b  (
( U `  a
) `  (/) ) ) )
10 suceq 4457 . . . . . 6  |-  ( d  =  c  ->  suc  d  =  suc  c )
1110fveq2d 5529 . . . . 5  |-  ( d  =  c  ->  (
( U `  b
) `  suc  d )  =  ( ( U `
 b ) `  suc  c ) )
12 fveq2 5525 . . . . . 6  |-  ( d  =  c  ->  (
( U `  a
) `  d )  =  ( ( U `
 a ) `  c ) )
1312iuneq2d 3930 . . . . 5  |-  ( d  =  c  ->  U_ a  e.  b  ( ( U `  a ) `  d )  =  U_ a  e.  b  (
( U `  a
) `  c )
)
1411, 13eqeq12d 2297 . . . 4  |-  ( d  =  c  ->  (
( ( U `  b ) `  suc  d )  =  U_ a  e.  b  (
( U `  a
) `  d )  <->  ( ( U `  b
) `  suc  c )  =  U_ a  e.  b  ( ( U `
 a ) `  c ) ) )
15 suceq 4457 . . . . . 6  |-  ( d  =  suc  c  ->  suc  d  =  suc  suc  c )
1615fveq2d 5529 . . . . 5  |-  ( d  =  suc  c  -> 
( ( U `  b ) `  suc  d )  =  ( ( U `  b
) `  suc  suc  c
) )
17 fveq2 5525 . . . . . 6  |-  ( d  =  suc  c  -> 
( ( U `  a ) `  d
)  =  ( ( U `  a ) `
 suc  c )
)
1817iuneq2d 3930 . . . . 5  |-  ( d  =  suc  c  ->  U_ a  e.  b 
( ( U `  a ) `  d
)  =  U_ a  e.  b  ( ( U `  a ) `  suc  c ) )
1916, 18eqeq12d 2297 . . . 4  |-  ( d  =  suc  c  -> 
( ( ( U `
 b ) `  suc  d )  =  U_ a  e.  b  (
( U `  a
) `  d )  <->  ( ( U `  b
) `  suc  suc  c
)  =  U_ a  e.  b  ( ( U `  a ) `  suc  c ) ) )
20 suceq 4457 . . . . . 6  |-  ( d  =  B  ->  suc  d  =  suc  B )
2120fveq2d 5529 . . . . 5  |-  ( d  =  B  ->  (
( U `  b
) `  suc  d )  =  ( ( U `
 b ) `  suc  B ) )
22 fveq2 5525 . . . . . 6  |-  ( d  =  B  ->  (
( U `  a
) `  d )  =  ( ( U `
 a ) `  B ) )
2322iuneq2d 3930 . . . . 5  |-  ( d  =  B  ->  U_ a  e.  b  ( ( U `  a ) `  d )  =  U_ a  e.  b  (
( U `  a
) `  B )
)
2421, 23eqeq12d 2297 . . . 4  |-  ( d  =  B  ->  (
( ( U `  b ) `  suc  d )  =  U_ a  e.  b  (
( U `  a
) `  d )  <->  ( ( U `  b
) `  suc  B )  =  U_ a  e.  b  ( ( U `
 a ) `  B ) ) )
25 uniiun 3955 . . . . 5  |-  U. b  =  U_ a  e.  b  a
26 ituni.u . . . . . . 7  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
2726itunisuc 8045 . . . . . 6  |-  ( ( U `  b ) `
 suc  (/) )  = 
U. ( ( U `
 b ) `  (/) )
28 vex 2791 . . . . . . . 8  |-  b  e. 
_V
2926ituni0 8044 . . . . . . . 8  |-  ( b  e.  _V  ->  (
( U `  b
) `  (/) )  =  b )
3028, 29ax-mp 8 . . . . . . 7  |-  ( ( U `  b ) `
 (/) )  =  b
3130unieqi 3837 . . . . . 6  |-  U. (
( U `  b
) `  (/) )  = 
U. b
3227, 31eqtri 2303 . . . . 5  |-  ( ( U `  b ) `
 suc  (/) )  = 
U. b
3326ituni0 8044 . . . . . 6  |-  ( a  e.  b  ->  (
( U `  a
) `  (/) )  =  a )
3433iuneq2i 3923 . . . . 5  |-  U_ a  e.  b  ( ( U `  a ) `  (/) )  =  U_ a  e.  b  a
3525, 32, 343eqtr4i 2313 . . . 4  |-  ( ( U `  b ) `
 suc  (/) )  = 
U_ a  e.  b  ( ( U `  a ) `  (/) )
3626itunisuc 8045 . . . . . 6  |-  ( ( U `  b ) `
 suc  suc  c )  =  U. ( ( U `  b ) `
 suc  c )
37 unieq 3836 . . . . . . 7  |-  ( ( ( U `  b
) `  suc  c )  =  U_ a  e.  b  ( ( U `
 a ) `  c )  ->  U. (
( U `  b
) `  suc  c )  =  U. U_ a  e.  b  ( ( U `  a ) `  c ) )
3826itunisuc 8045 . . . . . . . . . 10  |-  ( ( U `  a ) `
 suc  c )  =  U. ( ( U `
 a ) `  c )
3938a1i 10 . . . . . . . . 9  |-  ( a  e.  b  ->  (
( U `  a
) `  suc  c )  =  U. ( ( U `  a ) `
 c ) )
4039iuneq2i 3923 . . . . . . . 8  |-  U_ a  e.  b  ( ( U `  a ) `  suc  c )  = 
U_ a  e.  b 
U. ( ( U `
 a ) `  c )
41 iuncom4 3912 . . . . . . . 8  |-  U_ a  e.  b  U. (
( U `  a
) `  c )  =  U. U_ a  e.  b  ( ( U `
 a ) `  c )
4240, 41eqtr2i 2304 . . . . . . 7  |-  U. U_ a  e.  b  (
( U `  a
) `  c )  =  U_ a  e.  b  ( ( U `  a ) `  suc  c )
4337, 42syl6eq 2331 . . . . . 6  |-  ( ( ( U `  b
) `  suc  c )  =  U_ a  e.  b  ( ( U `
 a ) `  c )  ->  U. (
( U `  b
) `  suc  c )  =  U_ a  e.  b  ( ( U `
 a ) `  suc  c ) )
4436, 43syl5eq 2327 . . . . 5  |-  ( ( ( U `  b
) `  suc  c )  =  U_ a  e.  b  ( ( U `
 a ) `  c )  ->  (
( U `  b
) `  suc  suc  c
)  =  U_ a  e.  b  ( ( U `  a ) `  suc  c ) )
4544a1i 10 . . . 4  |-  ( c  e.  om  ->  (
( ( U `  b ) `  suc  c )  =  U_ a  e.  b  (
( U `  a
) `  c )  ->  ( ( U `  b ) `  suc  suc  c )  =  U_ a  e.  b  (
( U `  a
) `  suc  c ) ) )
469, 14, 19, 24, 35, 45finds 4682 . . 3  |-  ( B  e.  om  ->  (
( U `  b
) `  suc  B )  =  U_ a  e.  b  ( ( U `
 a ) `  B ) )
47 iun0 3958 . . . . 5  |-  U_ a  e.  b  (/)  =  (/)
4847eqcomi 2287 . . . 4  |-  (/)  =  U_ a  e.  b  (/)
49 peano2b 4672 . . . . . 6  |-  ( B  e.  om  <->  suc  B  e. 
om )
5026itunifn 8043 . . . . . . . 8  |-  ( b  e.  _V  ->  ( U `  b )  Fn  om )
51 fndm 5343 . . . . . . . 8  |-  ( ( U `  b )  Fn  om  ->  dom  ( U `  b )  =  om )
5228, 50, 51mp2b 9 . . . . . . 7  |-  dom  ( U `  b )  =  om
5352eleq2i 2347 . . . . . 6  |-  ( suc 
B  e.  dom  ( U `  b )  <->  suc 
B  e.  om )
5449, 53bitr4i 243 . . . . 5  |-  ( B  e.  om  <->  suc  B  e. 
dom  ( U `  b ) )
55 ndmfv 5552 . . . . 5  |-  ( -. 
suc  B  e.  dom  ( U `  b )  ->  ( ( U `
 b ) `  suc  B )  =  (/) )
5654, 55sylnbi 297 . . . 4  |-  ( -.  B  e.  om  ->  ( ( U `  b
) `  suc  B )  =  (/) )
57 vex 2791 . . . . . . . 8  |-  a  e. 
_V
5826itunifn 8043 . . . . . . . 8  |-  ( a  e.  _V  ->  ( U `  a )  Fn  om )
59 fndm 5343 . . . . . . . 8  |-  ( ( U `  a )  Fn  om  ->  dom  ( U `  a )  =  om )
6057, 58, 59mp2b 9 . . . . . . 7  |-  dom  ( U `  a )  =  om
6160eleq2i 2347 . . . . . 6  |-  ( B  e.  dom  ( U `
 a )  <->  B  e.  om )
62 ndmfv 5552 . . . . . 6  |-  ( -.  B  e.  dom  ( U `  a )  ->  ( ( U `  a ) `  B
)  =  (/) )
6361, 62sylnbir 298 . . . . 5  |-  ( -.  B  e.  om  ->  ( ( U `  a
) `  B )  =  (/) )
6463iuneq2d 3930 . . . 4  |-  ( -.  B  e.  om  ->  U_ a  e.  b  ( ( U `  a
) `  B )  =  U_ a  e.  b  (/) )
6548, 56, 643eqtr4a 2341 . . 3  |-  ( -.  B  e.  om  ->  ( ( U `  b
) `  suc  B )  =  U_ a  e.  b  ( ( U `
 a ) `  B ) )
6646, 65pm2.61i 156 . 2  |-  ( ( U `  b ) `
 suc  B )  =  U_ a  e.  b  ( ( U `  a ) `  B
)
674, 66vtoclg 2843 1  |-  ( A  e.  V  ->  (
( U `  A
) `  suc  B )  =  U_ a  e.  A  ( ( U `
 a ) `  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1623    e. wcel 1684   _Vcvv 2788   (/)c0 3455   U.cuni 3827   U_ciun 3905    e. cmpt 4077   suc csuc 4394   omcom 4656   dom cdm 4689    |` cres 4691    Fn wfn 5250   ` cfv 5255   reccrdg 6422
This theorem is referenced by:  hsmexlem4  8055
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423
  Copyright terms: Public domain W3C validator