MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunitc Structured version   Unicode version

Theorem itunitc 8301
Description: The union of all union iterates creates the transitive closure; compare trcl 7664. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
Assertion
Ref Expression
itunitc  |-  ( TC
`  A )  = 
U. ran  ( U `  A )
Distinct variable group:    x, A, y
Allowed substitution hints:    U( x, y)

Proof of Theorem itunitc
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5728 . . . 4  |-  ( a  =  A  ->  ( TC `  a )  =  ( TC `  A
) )
2 fveq2 5728 . . . . . 6  |-  ( a  =  A  ->  ( U `  a )  =  ( U `  A ) )
32rneqd 5097 . . . . 5  |-  ( a  =  A  ->  ran  ( U `  a )  =  ran  ( U `
 A ) )
43unieqd 4026 . . . 4  |-  ( a  =  A  ->  U. ran  ( U `  a )  =  U. ran  ( U `  A )
)
51, 4eqeq12d 2450 . . 3  |-  ( a  =  A  ->  (
( TC `  a
)  =  U. ran  ( U `  a )  <-> 
( TC `  A
)  =  U. ran  ( U `  A ) ) )
6 vex 2959 . . . . . . 7  |-  a  e. 
_V
7 ituni.u . . . . . . . 8  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
87ituni0 8298 . . . . . . 7  |-  ( a  e.  _V  ->  (
( U `  a
) `  (/) )  =  a )
96, 8ax-mp 8 . . . . . 6  |-  ( ( U `  a ) `
 (/) )  =  a
10 fvssunirn 5754 . . . . . 6  |-  ( ( U `  a ) `
 (/) )  C_  U. ran  ( U `  a )
119, 10eqsstr3i 3379 . . . . 5  |-  a  C_  U.
ran  ( U `  a )
12 dftr3 4306 . . . . . 6  |-  ( Tr 
U. ran  ( U `  a )  <->  A. b  e.  U. ran  ( U `
 a ) b 
C_  U. ran  ( U `
 a ) )
137itunifn 8297 . . . . . . . 8  |-  ( a  e.  _V  ->  ( U `  a )  Fn  om )
14 fnunirn 5999 . . . . . . . 8  |-  ( ( U `  a )  Fn  om  ->  (
b  e.  U. ran  ( U `  a )  <->  E. c  e.  om  b  e.  ( ( U `  a ) `  c ) ) )
156, 13, 14mp2b 10 . . . . . . 7  |-  ( b  e.  U. ran  ( U `  a )  <->  E. c  e.  om  b  e.  ( ( U `  a ) `  c
) )
16 elssuni 4043 . . . . . . . . 9  |-  ( b  e.  ( ( U `
 a ) `  c )  ->  b  C_ 
U. ( ( U `
 a ) `  c ) )
177itunisuc 8299 . . . . . . . . . 10  |-  ( ( U `  a ) `
 suc  c )  =  U. ( ( U `
 a ) `  c )
18 fvssunirn 5754 . . . . . . . . . 10  |-  ( ( U `  a ) `
 suc  c )  C_ 
U. ran  ( U `  a )
1917, 18eqsstr3i 3379 . . . . . . . . 9  |-  U. (
( U `  a
) `  c )  C_ 
U. ran  ( U `  a )
2016, 19syl6ss 3360 . . . . . . . 8  |-  ( b  e.  ( ( U `
 a ) `  c )  ->  b  C_ 
U. ran  ( U `  a ) )
2120rexlimivw 2826 . . . . . . 7  |-  ( E. c  e.  om  b  e.  ( ( U `  a ) `  c
)  ->  b  C_  U.
ran  ( U `  a ) )
2215, 21sylbi 188 . . . . . 6  |-  ( b  e.  U. ran  ( U `  a )  ->  b  C_  U. ran  ( U `  a )
)
2312, 22mprgbir 2776 . . . . 5  |-  Tr  U. ran  ( U `  a
)
24 tcmin 7680 . . . . . 6  |-  ( a  e.  _V  ->  (
( a  C_  U. ran  ( U `  a )  /\  Tr  U. ran  ( U `  a ) )  ->  ( TC `  a )  C_  U. ran  ( U `  a ) ) )
256, 24ax-mp 8 . . . . 5  |-  ( ( a  C_  U. ran  ( U `  a )  /\  Tr  U. ran  ( U `  a )
)  ->  ( TC `  a )  C_  U. ran  ( U `  a ) )
2611, 23, 25mp2an 654 . . . 4  |-  ( TC
`  a )  C_  U.
ran  ( U `  a )
27 unissb 4045 . . . . 5  |-  ( U. ran  ( U `  a
)  C_  ( TC `  a )  <->  A. b  e.  ran  ( U `  a ) b  C_  ( TC `  a ) )
28 fvelrnb 5774 . . . . . . 7  |-  ( ( U `  a )  Fn  om  ->  (
b  e.  ran  ( U `  a )  <->  E. c  e.  om  (
( U `  a
) `  c )  =  b ) )
296, 13, 28mp2b 10 . . . . . 6  |-  ( b  e.  ran  ( U `
 a )  <->  E. c  e.  om  ( ( U `
 a ) `  c )  =  b )
307itunitc1 8300 . . . . . . . . 9  |-  ( ( U `  a ) `
 c )  C_  ( TC `  a )
3130a1i 11 . . . . . . . 8  |-  ( c  e.  om  ->  (
( U `  a
) `  c )  C_  ( TC `  a
) )
32 sseq1 3369 . . . . . . . 8  |-  ( ( ( U `  a
) `  c )  =  b  ->  ( ( ( U `  a
) `  c )  C_  ( TC `  a
)  <->  b  C_  ( TC `  a ) ) )
3331, 32syl5ibcom 212 . . . . . . 7  |-  ( c  e.  om  ->  (
( ( U `  a ) `  c
)  =  b  -> 
b  C_  ( TC `  a ) ) )
3433rexlimiv 2824 . . . . . 6  |-  ( E. c  e.  om  (
( U `  a
) `  c )  =  b  ->  b  C_  ( TC `  a ) )
3529, 34sylbi 188 . . . . 5  |-  ( b  e.  ran  ( U `
 a )  -> 
b  C_  ( TC `  a ) )
3627, 35mprgbir 2776 . . . 4  |-  U. ran  ( U `  a ) 
C_  ( TC `  a )
3726, 36eqssi 3364 . . 3  |-  ( TC
`  a )  = 
U. ran  ( U `  a )
385, 37vtoclg 3011 . 2  |-  ( A  e.  _V  ->  ( TC `  A )  = 
U. ran  ( U `  A ) )
39 rn0 5127 . . . . 5  |-  ran  (/)  =  (/)
4039unieqi 4025 . . . 4  |-  U. ran  (/)  =  U. (/)
41 uni0 4042 . . . 4  |-  U. (/)  =  (/)
4240, 41eqtr2i 2457 . . 3  |-  (/)  =  U. ran  (/)
43 fvprc 5722 . . 3  |-  ( -.  A  e.  _V  ->  ( TC `  A )  =  (/) )
44 fvprc 5722 . . . . 5  |-  ( -.  A  e.  _V  ->  ( U `  A )  =  (/) )
4544rneqd 5097 . . . 4  |-  ( -.  A  e.  _V  ->  ran  ( U `  A
)  =  ran  (/) )
4645unieqd 4026 . . 3  |-  ( -.  A  e.  _V  ->  U.
ran  ( U `  A )  =  U. ran  (/) )
4742, 43, 463eqtr4a 2494 . 2  |-  ( -.  A  e.  _V  ->  ( TC `  A )  =  U. ran  ( U `  A )
)
4838, 47pm2.61i 158 1  |-  ( TC
`  A )  = 
U. ran  ( U `  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2706   _Vcvv 2956    C_ wss 3320   (/)c0 3628   U.cuni 4015    e. cmpt 4266   Tr wtr 4302   suc csuc 4583   omcom 4845   ran crn 4879    |` cres 4880    Fn wfn 5449   ` cfv 5454   reccrdg 6667   TCctc 7675
This theorem is referenced by:  hsmexlem5  8310
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-recs 6633  df-rdg 6668  df-tc 7676
  Copyright terms: Public domain W3C validator