Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunab Unicode version

Theorem iunab 3964
 Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
Assertion
Ref Expression
iunab
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   ()

Proof of Theorem iunab
StepHypRef Expression
1 nfcv 2432 . . . 4
2 nfab1 2434 . . . 4
31, 2nfiun 3947 . . 3
4 nfab1 2434 . . 3
53, 4cleqf 2456 . 2
6 abid 2284 . . . 4
76rexbii 2581 . . 3
8 eliun 3925 . . 3
9 abid 2284 . . 3
107, 8, 93bitr4i 268 . 2
115, 10mpgbir 1540 1
 Colors of variables: wff set class Syntax hints:   wb 176   wceq 1632   wcel 1696  cab 2282  wrex 2557  ciun 3921 This theorem is referenced by:  iunrab  3965  iunid  3973  dfimafn2  5588  rabiun2  24997  sallnei  25632  iscola2  26195  dfaimafn2  28134 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-v 2803  df-iun 3923
 Copyright terms: Public domain W3C validator