MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunab Structured version   Unicode version

Theorem iunab 4137
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
Assertion
Ref Expression
iunab  |-  U_ x  e.  A  { y  |  ph }  =  {
y  |  E. x  e.  A  ph }
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem iunab
StepHypRef Expression
1 nfcv 2572 . . . 4  |-  F/_ y A
2 nfab1 2574 . . . 4  |-  F/_ y { y  |  ph }
31, 2nfiun 4119 . . 3  |-  F/_ y U_ x  e.  A  { y  |  ph }
4 nfab1 2574 . . 3  |-  F/_ y { y  |  E. x  e.  A  ph }
53, 4cleqf 2596 . 2  |-  ( U_ x  e.  A  {
y  |  ph }  =  { y  |  E. x  e.  A  ph }  <->  A. y ( y  e. 
U_ x  e.  A  { y  |  ph } 
<->  y  e.  { y  |  E. x  e.  A  ph } ) )
6 abid 2424 . . . 4  |-  ( y  e.  { y  | 
ph }  <->  ph )
76rexbii 2730 . . 3  |-  ( E. x  e.  A  y  e.  { y  | 
ph }  <->  E. x  e.  A  ph )
8 eliun 4097 . . 3  |-  ( y  e.  U_ x  e.  A  { y  | 
ph }  <->  E. x  e.  A  y  e.  { y  |  ph }
)
9 abid 2424 . . 3  |-  ( y  e.  { y  |  E. x  e.  A  ph }  <->  E. x  e.  A  ph )
107, 8, 93bitr4i 269 . 2  |-  ( y  e.  U_ x  e.  A  { y  | 
ph }  <->  y  e.  { y  |  E. x  e.  A  ph } )
115, 10mpgbir 1559 1  |-  U_ x  e.  A  { y  |  ph }  =  {
y  |  E. x  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    <-> wb 177    = wceq 1652    e. wcel 1725   {cab 2422   E.wrex 2706   U_ciun 4093
This theorem is referenced by:  iunrab  4138  iunid  4146  dfimafn2  5776  rabiun  26236  dfaimafn2  28006  rnfdmpr  28083
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-v 2958  df-iun 4095
  Copyright terms: Public domain W3C validator