MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncld Structured version   Unicode version

Theorem iuncld 17101
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
iuncld  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  A  B  e.  ( Clsd `  J )
)
Distinct variable groups:    x, J    x, X    x, A
Allowed substitution hint:    B( x)

Proof of Theorem iuncld
StepHypRef Expression
1 difin 3570 . . . 4  |-  ( X 
\  ( X  i^i  |^|_
x  e.  A  ( X  \  B ) ) )  =  ( X  \  |^|_ x  e.  A  ( X  \  B ) )
2 iundif2 4150 . . . 4  |-  U_ x  e.  A  ( X  \  ( X  \  B
) )  =  ( X  \  |^|_ x  e.  A  ( X  \  B ) )
31, 2eqtr4i 2458 . . 3  |-  ( X 
\  ( X  i^i  |^|_
x  e.  A  ( X  \  B ) ) )  =  U_ x  e.  A  ( X  \  ( X  \  B ) )
4 clscld.1 . . . . . . . 8  |-  X  = 
U. J
54cldss 17085 . . . . . . 7  |-  ( B  e.  ( Clsd `  J
)  ->  B  C_  X
)
6 dfss4 3567 . . . . . . 7  |-  ( B 
C_  X  <->  ( X  \  ( X  \  B
) )  =  B )
75, 6sylib 189 . . . . . 6  |-  ( B  e.  ( Clsd `  J
)  ->  ( X  \  ( X  \  B
) )  =  B )
87ralimi 2773 . . . . 5  |-  ( A. x  e.  A  B  e.  ( Clsd `  J
)  ->  A. x  e.  A  ( X  \  ( X  \  B
) )  =  B )
983ad2ant3 980 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  A. x  e.  A  ( X  \  ( X  \  B
) )  =  B )
10 iuneq2 4101 . . . 4  |-  ( A. x  e.  A  ( X  \  ( X  \  B ) )  =  B  ->  U_ x  e.  A  ( X  \ 
( X  \  B
) )  =  U_ x  e.  A  B
)
119, 10syl 16 . . 3  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  A  ( X  \  ( X  \  B
) )  =  U_ x  e.  A  B
)
123, 11syl5eq 2479 . 2  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  ( X  \  ( X  i^i  |^|_
x  e.  A  ( X  \  B ) ) )  =  U_ x  e.  A  B
)
13 simp1 957 . . 3  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  J  e.  Top )
144cldopn 17087 . . . . 5  |-  ( B  e.  ( Clsd `  J
)  ->  ( X  \  B )  e.  J
)
1514ralimi 2773 . . . 4  |-  ( A. x  e.  A  B  e.  ( Clsd `  J
)  ->  A. x  e.  A  ( X  \  B )  e.  J
)
164riinopn 16973 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( X  \  B )  e.  J )  ->  ( X  i^i  |^|_ x  e.  A  ( X  \  B ) )  e.  J )
1715, 16syl3an3 1219 . . 3  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  ( X  i^i  |^|_ x  e.  A  ( X  \  B ) )  e.  J )
184opncld 17089 . . 3  |-  ( ( J  e.  Top  /\  ( X  i^i  |^|_ x  e.  A  ( X  \  B ) )  e.  J )  ->  ( X  \  ( X  i^i  |^|_
x  e.  A  ( X  \  B ) ) )  e.  (
Clsd `  J )
)
1913, 17, 18syl2anc 643 . 2  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  ( X  \  ( X  i^i  |^|_
x  e.  A  ( X  \  B ) ) )  e.  (
Clsd `  J )
)
2012, 19eqeltrrd 2510 1  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  A  B  e.  ( Clsd `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697    \ cdif 3309    i^i cin 3311    C_ wss 3312   U.cuni 4007   U_ciun 4085   |^|_ciin 4086   ` cfv 5446   Fincfn 7101   Topctop 16950   Clsdccld 17072
This theorem is referenced by:  unicld  17102  t1ficld  17383  mblfinlem  26234
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-fin 7105  df-top 16955  df-cld 17075
  Copyright terms: Public domain W3C validator