MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncom Unicode version

Theorem iuncom 4059
Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
iuncom  |-  U_ x  e.  A  U_ y  e.  B  C  =  U_ y  e.  B  U_ x  e.  A  C
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    A( x)    B( y)    C( x, y)

Proof of Theorem iuncom
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 rexcom 2829 . . . 4  |-  ( E. x  e.  A  E. y  e.  B  z  e.  C  <->  E. y  e.  B  E. x  e.  A  z  e.  C )
2 eliun 4057 . . . . 5  |-  ( z  e.  U_ y  e.  B  C  <->  E. y  e.  B  z  e.  C )
32rexbii 2691 . . . 4  |-  ( E. x  e.  A  z  e.  U_ y  e.  B  C  <->  E. x  e.  A  E. y  e.  B  z  e.  C )
4 eliun 4057 . . . . 5  |-  ( z  e.  U_ x  e.  A  C  <->  E. x  e.  A  z  e.  C )
54rexbii 2691 . . . 4  |-  ( E. y  e.  B  z  e.  U_ x  e.  A  C  <->  E. y  e.  B  E. x  e.  A  z  e.  C )
61, 3, 53bitr4i 269 . . 3  |-  ( E. x  e.  A  z  e.  U_ y  e.  B  C  <->  E. y  e.  B  z  e.  U_ x  e.  A  C
)
7 eliun 4057 . . 3  |-  ( z  e.  U_ x  e.  A  U_ y  e.  B  C  <->  E. x  e.  A  z  e.  U_ y  e.  B  C
)
8 eliun 4057 . . 3  |-  ( z  e.  U_ y  e.  B  U_ x  e.  A  C  <->  E. y  e.  B  z  e.  U_ x  e.  A  C
)
96, 7, 83bitr4i 269 . 2  |-  ( z  e.  U_ x  e.  A  U_ y  e.  B  C  <->  z  e.  U_ y  e.  B  U_ x  e.  A  C
)
109eqriv 2401 1  |-  U_ x  e.  A  U_ y  e.  B  C  =  U_ y  e.  B  U_ x  e.  A  C
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1721   E.wrex 2667   U_ciun 4053
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ral 2671  df-rex 2672  df-v 2918  df-iun 4055
  Copyright terms: Public domain W3C validator