MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunconlem Structured version   Unicode version

Theorem iunconlem 17495
Description: Lemma for iuncon 17496. (Contributed by Mario Carneiro, 11-Jun-2014.)
Hypotheses
Ref Expression
iuncon.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
iuncon.3  |-  ( (
ph  /\  k  e.  A )  ->  B  C_  X )
iuncon.4  |-  ( (
ph  /\  k  e.  A )  ->  P  e.  B )
iuncon.5  |-  ( (
ph  /\  k  e.  A )  ->  ( Jt  B )  e.  Con )
iuncon.6  |-  ( ph  ->  U  e.  J )
iuncon.7  |-  ( ph  ->  V  e.  J )
iuncon.8  |-  ( ph  ->  ( V  i^i  U_ k  e.  A  B
)  =/=  (/) )
iuncon.9  |-  ( ph  ->  ( U  i^i  V
)  C_  ( X  \ 
U_ k  e.  A  B ) )
iuncon.10  |-  ( ph  ->  U_ k  e.  A  B  C_  ( U  u.  V ) )
iuncon.11  |-  F/ k
ph
Assertion
Ref Expression
iunconlem  |-  ( ph  ->  -.  P  e.  U
)
Distinct variable groups:    A, k    k, J    P, k    k, X    U, k    k, V
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem iunconlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iuncon.8 . . 3  |-  ( ph  ->  ( V  i^i  U_ k  e.  A  B
)  =/=  (/) )
2 n0 3639 . . 3  |-  ( ( V  i^i  U_ k  e.  A  B )  =/=  (/)  <->  E. x  x  e.  ( V  i^i  U_ k  e.  A  B
) )
31, 2sylib 190 . 2  |-  ( ph  ->  E. x  x  e.  ( V  i^i  U_ k  e.  A  B
) )
4 elin 3532 . . . 4  |-  ( x  e.  ( V  i^i  U_ k  e.  A  B
)  <->  ( x  e.  V  /\  x  e. 
U_ k  e.  A  B ) )
5 eliun 4099 . . . . . 6  |-  ( x  e.  U_ k  e.  A  B  <->  E. k  e.  A  x  e.  B )
6 iuncon.11 . . . . . . . 8  |-  F/ k
ph
7 nfv 1630 . . . . . . . 8  |-  F/ k  x  e.  V
86, 7nfan 1847 . . . . . . 7  |-  F/ k ( ph  /\  x  e.  V )
9 nfv 1630 . . . . . . 7  |-  F/ k  -.  P  e.  U
10 iuncon.5 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  ( Jt  B )  e.  Con )
1110adantr 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  A )  /\  (
x  e.  V  /\  x  e.  B )
)  ->  ( Jt  B
)  e.  Con )
12 iuncon.2 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  (TopOn `  X ) )
1312ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  J  e.  (TopOn `  X
) )
14 iuncon.3 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  B  C_  X )
1514adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  B  C_  X )
16 iuncon.6 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  J )
1716ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  U  e.  J )
18 iuncon.7 . . . . . . . . . . . . 13  |-  ( ph  ->  V  e.  J )
1918ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  V  e.  J )
20 simprr 735 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  P  e.  U )
21 iuncon.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  P  e.  B )
2221adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  P  e.  B )
23 inelcm 3684 . . . . . . . . . . . . 13  |-  ( ( P  e.  U  /\  P  e.  B )  ->  ( U  i^i  B
)  =/=  (/) )
2420, 22, 23syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( U  i^i  B
)  =/=  (/) )
25 inelcm 3684 . . . . . . . . . . . . 13  |-  ( ( x  e.  V  /\  x  e.  B )  ->  ( V  i^i  B
)  =/=  (/) )
2625ad2antrl 710 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( V  i^i  B
)  =/=  (/) )
27 iuncon.9 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( U  i^i  V
)  C_  ( X  \ 
U_ k  e.  A  B ) )
2827ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( U  i^i  V
)  C_  ( X  \ 
U_ k  e.  A  B ) )
29 ssiun2 4136 . . . . . . . . . . . . . . . 16  |-  ( k  e.  A  ->  B  C_ 
U_ k  e.  A  B )
3029ad2antlr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  B  C_  U_ k  e.  A  B )
3130sscond 3486 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( X  \  U_ k  e.  A  B
)  C_  ( X  \  B ) )
3228, 31sstrd 3360 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( U  i^i  V
)  C_  ( X  \  B ) )
33 inss1 3563 . . . . . . . . . . . . . . 15  |-  ( U  i^i  V )  C_  U
34 toponss 16999 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  U  C_  X )
3513, 17, 34syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  U  C_  X )
3633, 35syl5ss 3361 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( U  i^i  V
)  C_  X )
37 reldisj 3673 . . . . . . . . . . . . . 14  |-  ( ( U  i^i  V ) 
C_  X  ->  (
( ( U  i^i  V )  i^i  B )  =  (/)  <->  ( U  i^i  V )  C_  ( X  \  B ) ) )
3836, 37syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( ( ( U  i^i  V )  i^i 
B )  =  (/)  <->  ( U  i^i  V )  C_  ( X  \  B ) ) )
3932, 38mpbird 225 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( ( U  i^i  V )  i^i  B )  =  (/) )
40 iuncon.10 . . . . . . . . . . . . . 14  |-  ( ph  ->  U_ k  e.  A  B  C_  ( U  u.  V ) )
4140ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  U_ k  e.  A  B  C_  ( U  u.  V ) )
4230, 41sstrd 3360 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  B  C_  ( U  u.  V ) )
4313, 15, 17, 19, 24, 26, 39, 42nconsubb 17491 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  -.  ( Jt  B )  e.  Con )
4443expr 600 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  A )  /\  (
x  e.  V  /\  x  e.  B )
)  ->  ( P  e.  U  ->  -.  ( Jt  B )  e.  Con ) )
4511, 44mt2d 112 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  A )  /\  (
x  e.  V  /\  x  e.  B )
)  ->  -.  P  e.  U )
4645an4s 801 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  V )  /\  (
k  e.  A  /\  x  e.  B )
)  ->  -.  P  e.  U )
4746exp32 590 . . . . . . 7  |-  ( (
ph  /\  x  e.  V )  ->  (
k  e.  A  -> 
( x  e.  B  ->  -.  P  e.  U
) ) )
488, 9, 47rexlimd 2829 . . . . . 6  |-  ( (
ph  /\  x  e.  V )  ->  ( E. k  e.  A  x  e.  B  ->  -.  P  e.  U ) )
495, 48syl5bi 210 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  (
x  e.  U_ k  e.  A  B  ->  -.  P  e.  U ) )
5049expimpd 588 . . . 4  |-  ( ph  ->  ( ( x  e.  V  /\  x  e. 
U_ k  e.  A  B )  ->  -.  P  e.  U )
)
514, 50syl5bi 210 . . 3  |-  ( ph  ->  ( x  e.  ( V  i^i  U_ k  e.  A  B )  ->  -.  P  e.  U
) )
5251exlimdv 1647 . 2  |-  ( ph  ->  ( E. x  x  e.  ( V  i^i  U_ k  e.  A  B
)  ->  -.  P  e.  U ) )
533, 52mpd 15 1  |-  ( ph  ->  -.  P  e.  U
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551   F/wnf 1554    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708    \ cdif 3319    u. cun 3320    i^i cin 3321    C_ wss 3322   (/)c0 3630   U_ciun 4095   ` cfv 5457  (class class class)co 6084   ↾t crest 13653  TopOnctopon 16964   Conccon 17479
This theorem is referenced by:  iuncon  17496  iunconlem2  29120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-recs 6636  df-rdg 6671  df-oadd 6731  df-er 6908  df-en 7113  df-fin 7116  df-fi 7419  df-rest 13655  df-topgen 13672  df-top 16968  df-bases 16970  df-topon 16971  df-cld 17088  df-con 17480
  Copyright terms: Public domain W3C validator