MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunconlem Unicode version

Theorem iunconlem 17153
Description: Lemma for iuncon 17154. (Contributed by Mario Carneiro, 11-Jun-2014.)
Hypotheses
Ref Expression
iuncon.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
iuncon.3  |-  ( (
ph  /\  k  e.  A )  ->  B  C_  X )
iuncon.4  |-  ( (
ph  /\  k  e.  A )  ->  P  e.  B )
iuncon.5  |-  ( (
ph  /\  k  e.  A )  ->  ( Jt  B )  e.  Con )
iuncon.6  |-  ( ph  ->  U  e.  J )
iuncon.7  |-  ( ph  ->  V  e.  J )
iuncon.8  |-  ( ph  ->  ( V  i^i  U_ k  e.  A  B
)  =/=  (/) )
iuncon.9  |-  ( ph  ->  ( U  i^i  V
)  C_  ( X  \ 
U_ k  e.  A  B ) )
iuncon.10  |-  ( ph  ->  U_ k  e.  A  B  C_  ( U  u.  V ) )
iuncon.11  |-  F/ k
ph
Assertion
Ref Expression
iunconlem  |-  ( ph  ->  -.  P  e.  U
)
Distinct variable groups:    A, k    k, J    P, k    k, X    U, k    k, V
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem iunconlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iuncon.8 . . 3  |-  ( ph  ->  ( V  i^i  U_ k  e.  A  B
)  =/=  (/) )
2 n0 3464 . . 3  |-  ( ( V  i^i  U_ k  e.  A  B )  =/=  (/)  <->  E. x  x  e.  ( V  i^i  U_ k  e.  A  B
) )
31, 2sylib 188 . 2  |-  ( ph  ->  E. x  x  e.  ( V  i^i  U_ k  e.  A  B
) )
4 elin 3358 . . . 4  |-  ( x  e.  ( V  i^i  U_ k  e.  A  B
)  <->  ( x  e.  V  /\  x  e. 
U_ k  e.  A  B ) )
5 eliun 3909 . . . . . 6  |-  ( x  e.  U_ k  e.  A  B  <->  E. k  e.  A  x  e.  B )
6 iuncon.11 . . . . . . . 8  |-  F/ k
ph
7 nfv 1605 . . . . . . . 8  |-  F/ k  x  e.  V
86, 7nfan 1771 . . . . . . 7  |-  F/ k ( ph  /\  x  e.  V )
9 nfv 1605 . . . . . . 7  |-  F/ k  -.  P  e.  U
10 iuncon.5 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  ( Jt  B )  e.  Con )
1110adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  A )  /\  (
x  e.  V  /\  x  e.  B )
)  ->  ( Jt  B
)  e.  Con )
12 iuncon.2 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  (TopOn `  X ) )
1312ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  J  e.  (TopOn `  X
) )
14 iuncon.3 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  B  C_  X )
1514adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  B  C_  X )
16 iuncon.6 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  J )
1716ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  U  e.  J )
18 iuncon.7 . . . . . . . . . . . . 13  |-  ( ph  ->  V  e.  J )
1918ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  V  e.  J )
20 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  P  e.  U )
21 iuncon.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  P  e.  B )
2221adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  P  e.  B )
23 inelcm 3509 . . . . . . . . . . . . 13  |-  ( ( P  e.  U  /\  P  e.  B )  ->  ( U  i^i  B
)  =/=  (/) )
2420, 22, 23syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( U  i^i  B
)  =/=  (/) )
25 inelcm 3509 . . . . . . . . . . . . 13  |-  ( ( x  e.  V  /\  x  e.  B )  ->  ( V  i^i  B
)  =/=  (/) )
2625ad2antrl 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( V  i^i  B
)  =/=  (/) )
27 iuncon.9 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( U  i^i  V
)  C_  ( X  \ 
U_ k  e.  A  B ) )
2827ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( U  i^i  V
)  C_  ( X  \ 
U_ k  e.  A  B ) )
29 ssiun2 3945 . . . . . . . . . . . . . . . 16  |-  ( k  e.  A  ->  B  C_ 
U_ k  e.  A  B )
3029ad2antlr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  B  C_  U_ k  e.  A  B )
31 sscon 3310 . . . . . . . . . . . . . . 15  |-  ( B 
C_  U_ k  e.  A  B  ->  ( X  \  U_ k  e.  A  B )  C_  ( X  \  B ) )
3230, 31syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( X  \  U_ k  e.  A  B
)  C_  ( X  \  B ) )
3328, 32sstrd 3189 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( U  i^i  V
)  C_  ( X  \  B ) )
34 inss1 3389 . . . . . . . . . . . . . . 15  |-  ( U  i^i  V )  C_  U
35 toponss 16667 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  U  C_  X )
3613, 17, 35syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  U  C_  X )
3734, 36syl5ss 3190 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( U  i^i  V
)  C_  X )
38 reldisj 3498 . . . . . . . . . . . . . 14  |-  ( ( U  i^i  V ) 
C_  X  ->  (
( ( U  i^i  V )  i^i  B )  =  (/)  <->  ( U  i^i  V )  C_  ( X  \  B ) ) )
3937, 38syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( ( ( U  i^i  V )  i^i 
B )  =  (/)  <->  ( U  i^i  V )  C_  ( X  \  B ) ) )
4033, 39mpbird 223 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  -> 
( ( U  i^i  V )  i^i  B )  =  (/) )
41 iuncon.10 . . . . . . . . . . . . . 14  |-  ( ph  ->  U_ k  e.  A  B  C_  ( U  u.  V ) )
4241ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  U_ k  e.  A  B  C_  ( U  u.  V ) )
4330, 42sstrd 3189 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  B  C_  ( U  u.  V ) )
4413, 15, 17, 19, 24, 26, 40, 43nconsubb 17149 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  A )  /\  (
( x  e.  V  /\  x  e.  B
)  /\  P  e.  U ) )  ->  -.  ( Jt  B )  e.  Con )
4544expr 598 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  A )  /\  (
x  e.  V  /\  x  e.  B )
)  ->  ( P  e.  U  ->  -.  ( Jt  B )  e.  Con ) )
4611, 45mt2d 109 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  A )  /\  (
x  e.  V  /\  x  e.  B )
)  ->  -.  P  e.  U )
4746an4s 799 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  V )  /\  (
k  e.  A  /\  x  e.  B )
)  ->  -.  P  e.  U )
4847exp32 588 . . . . . . 7  |-  ( (
ph  /\  x  e.  V )  ->  (
k  e.  A  -> 
( x  e.  B  ->  -.  P  e.  U
) ) )
498, 9, 48rexlimd 2664 . . . . . 6  |-  ( (
ph  /\  x  e.  V )  ->  ( E. k  e.  A  x  e.  B  ->  -.  P  e.  U ) )
505, 49syl5bi 208 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  (
x  e.  U_ k  e.  A  B  ->  -.  P  e.  U ) )
5150expimpd 586 . . . 4  |-  ( ph  ->  ( ( x  e.  V  /\  x  e. 
U_ k  e.  A  B )  ->  -.  P  e.  U )
)
524, 51syl5bi 208 . . 3  |-  ( ph  ->  ( x  e.  ( V  i^i  U_ k  e.  A  B )  ->  -.  P  e.  U
) )
5352exlimdv 1664 . 2  |-  ( ph  ->  ( E. x  x  e.  ( V  i^i  U_ k  e.  A  B
)  ->  -.  P  e.  U ) )
543, 53mpd 14 1  |-  ( ph  ->  -.  P  e.  U
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528   F/wnf 1531    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   U_ciun 3905   ` cfv 5255  (class class class)co 5858   ↾t crest 13325  TopOnctopon 16632   Conccon 17137
This theorem is referenced by:  iuncon  17154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-oadd 6483  df-er 6660  df-en 6864  df-fin 6867  df-fi 7165  df-rest 13327  df-topgen 13344  df-top 16636  df-bases 16638  df-topon 16639  df-cld 16756  df-con 17138
  Copyright terms: Public domain W3C validator