MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundisj Unicode version

Theorem iundisj 18905
Description: Rewrite a countable union as a disjoint union. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypothesis
Ref Expression
iundisj.1  |-  ( n  =  k  ->  A  =  B )
Assertion
Ref Expression
iundisj  |-  U_ n  e.  NN  A  =  U_ n  e.  NN  ( A  \  U_ k  e.  ( 1..^ n ) B )
Distinct variable groups:    k, n    A, k    B, n
Allowed substitution hints:    A( n)    B( k)

Proof of Theorem iundisj
Dummy variables  x  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3258 . . . . . . . . . 10  |-  { n  e.  NN  |  x  e.  A }  C_  NN
2 nnuz 10263 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
31, 2sseqtri 3210 . . . . . . . . 9  |-  { n  e.  NN  |  x  e.  A }  C_  ( ZZ>=
`  1 )
4 rabn0 3474 . . . . . . . . . 10  |-  ( { n  e.  NN  |  x  e.  A }  =/=  (/)  <->  E. n  e.  NN  x  e.  A )
54biimpri 197 . . . . . . . . 9  |-  ( E. n  e.  NN  x  e.  A  ->  { n  e.  NN  |  x  e.  A }  =/=  (/) )
6 infmssuzcl 10301 . . . . . . . . 9  |-  ( ( { n  e.  NN  |  x  e.  A }  C_  ( ZZ>= `  1
)  /\  { n  e.  NN  |  x  e.  A }  =/=  (/) )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  x  e.  A } )
73, 5, 6sylancr 644 . . . . . . . 8  |-  ( E. n  e.  NN  x  e.  A  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  {
n  e.  NN  |  x  e.  A }
)
8 nfrab1 2720 . . . . . . . . . 10  |-  F/_ n { n  e.  NN  |  x  e.  A }
9 nfcv 2419 . . . . . . . . . 10  |-  F/_ n RR
10 nfcv 2419 . . . . . . . . . 10  |-  F/_ n `'  <
118, 9, 10nfsup 7202 . . . . . . . . 9  |-  F/_ n sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )
12 nfcv 2419 . . . . . . . . 9  |-  F/_ n NN
1311nfcsb1 3112 . . . . . . . . . 10  |-  F/_ n [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A
1413nfel2 2431 . . . . . . . . 9  |-  F/ n  x  e.  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A
15 csbeq1a 3089 . . . . . . . . . 10  |-  ( n  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  A  =  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A )
1615eleq2d 2350 . . . . . . . . 9  |-  ( n  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( x  e.  A  <->  x  e.  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A ) )
1711, 12, 14, 16elrabf 2922 . . . . . . . 8  |-  ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  x  e.  A } 
<->  ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN  /\  x  e.  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A
) )
187, 17sylib 188 . . . . . . 7  |-  ( E. n  e.  NN  x  e.  A  ->  ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN  /\  x  e. 
[_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A ) )
1918simpld 445 . . . . . 6  |-  ( E. n  e.  NN  x  e.  A  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN )
2018simprd 449 . . . . . . 7  |-  ( E. n  e.  NN  x  e.  A  ->  x  e. 
[_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A )
2119nnred 9761 . . . . . . . . 9  |-  ( E. n  e.  NN  x  e.  A  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  RR )
2221ltnrd 8953 . . . . . . . 8  |-  ( E. n  e.  NN  x  e.  A  ->  -.  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
23 eliun 3909 . . . . . . . . 9  |-  ( x  e.  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B  <->  E. k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) x  e.  B )
2421ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  RR )
25 elfzouz 10879 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )  -> 
k  e.  ( ZZ>= ` 
1 ) )
2625, 2syl6eleqr 2374 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )  -> 
k  e.  NN )
2726ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  e.  NN )
2827nnred 9761 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  e.  RR )
29 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  x  e.  B )
30 iundisj.1 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  A  =  B )
3130eleq2d 2350 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
x  e.  A  <->  x  e.  B ) )
3231elrab 2923 . . . . . . . . . . . . . 14  |-  ( k  e.  { n  e.  NN  |  x  e.  A }  <->  ( k  e.  NN  /\  x  e.  B ) )
3327, 29, 32sylanbrc 645 . . . . . . . . . . . . 13  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  e.  { n  e.  NN  |  x  e.  A } )
34 infmssuzle 10300 . . . . . . . . . . . . 13  |-  ( ( { n  e.  NN  |  x  e.  A }  C_  ( ZZ>= `  1
)  /\  k  e.  { n  e.  NN  |  x  e.  A }
)  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <_  k
)
353, 33, 34sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <_  k
)
36 elfzolt2 10883 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )  -> 
k  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
3736ad2antlr 707 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
3824, 28, 24, 35, 37lelttrd 8974 . . . . . . . . . . 11  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
3938ex 423 . . . . . . . . . 10  |-  ( ( E. n  e.  NN  x  e.  A  /\  k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  ->  ( x  e.  B  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
4039rexlimdva 2667 . . . . . . . . 9  |-  ( E. n  e.  NN  x  e.  A  ->  ( E. k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) x  e.  B  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
4123, 40syl5bi 208 . . . . . . . 8  |-  ( E. n  e.  NN  x  e.  A  ->  ( x  e.  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
4222, 41mtod 168 . . . . . . 7  |-  ( E. n  e.  NN  x  e.  A  ->  -.  x  e.  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B )
43 eldif 3162 . . . . . . 7  |-  ( x  e.  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B )  <->  ( x  e. 
[_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  /\  -.  x  e.  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) )
4420, 42, 43sylanbrc 645 . . . . . 6  |-  ( E. n  e.  NN  x  e.  A  ->  x  e.  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) )
45 csbeq1 3084 . . . . . . . . 9  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  [_ m  /  n ]_ A  =  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A )
46 oveq2 5866 . . . . . . . . . 10  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( 1..^ m )  =  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
4746iuneq1d 3928 . . . . . . . . 9  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  U_ k  e.  ( 1..^ m ) B  =  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B )
4845, 47difeq12d 3295 . . . . . . . 8  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( [_ m  /  n ]_ A  \  U_ k  e.  (
1..^ m ) B )  =  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) )
4948eleq2d 2350 . . . . . . 7  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( x  e.  ( [_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B )  <-> 
x  e.  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) ) )
5049rspcev 2884 . . . . . 6  |-  ( ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN  /\  x  e.  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) )  ->  E. m  e.  NN  x  e.  (
[_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) )
5119, 44, 50syl2anc 642 . . . . 5  |-  ( E. n  e.  NN  x  e.  A  ->  E. m  e.  NN  x  e.  (
[_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) )
52 nfv 1605 . . . . . 6  |-  F/ m  x  e.  ( A  \ 
U_ k  e.  ( 1..^ n ) B )
53 nfcsb1v 3113 . . . . . . . 8  |-  F/_ n [_ m  /  n ]_ A
54 nfcv 2419 . . . . . . . 8  |-  F/_ n U_ k  e.  (
1..^ m ) B
5553, 54nfdif 3297 . . . . . . 7  |-  F/_ n
( [_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B )
5655nfel2 2431 . . . . . 6  |-  F/ n  x  e.  ( [_ m  /  n ]_ A  \ 
U_ k  e.  ( 1..^ m ) B )
57 csbeq1a 3089 . . . . . . . 8  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
58 oveq2 5866 . . . . . . . . 9  |-  ( n  =  m  ->  (
1..^ n )  =  ( 1..^ m ) )
5958iuneq1d 3928 . . . . . . . 8  |-  ( n  =  m  ->  U_ k  e.  ( 1..^ n ) B  =  U_ k  e.  ( 1..^ m ) B )
6057, 59difeq12d 3295 . . . . . . 7  |-  ( n  =  m  ->  ( A  \  U_ k  e.  ( 1..^ n ) B )  =  (
[_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) )
6160eleq2d 2350 . . . . . 6  |-  ( n  =  m  ->  (
x  e.  ( A 
\  U_ k  e.  ( 1..^ n ) B )  <->  x  e.  ( [_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) ) )
6252, 56, 61cbvrex 2761 . . . . 5  |-  ( E. n  e.  NN  x  e.  ( A  \  U_ k  e.  ( 1..^ n ) B )  <->  E. m  e.  NN  x  e.  ( [_ m  /  n ]_ A  \ 
U_ k  e.  ( 1..^ m ) B ) )
6351, 62sylibr 203 . . . 4  |-  ( E. n  e.  NN  x  e.  A  ->  E. n  e.  NN  x  e.  ( A  \  U_ k  e.  ( 1..^ n ) B ) )
64 eldifi 3298 . . . . 5  |-  ( x  e.  ( A  \  U_ k  e.  (
1..^ n ) B )  ->  x  e.  A )
6564reximi 2650 . . . 4  |-  ( E. n  e.  NN  x  e.  ( A  \  U_ k  e.  ( 1..^ n ) B )  ->  E. n  e.  NN  x  e.  A )
6663, 65impbii 180 . . 3  |-  ( E. n  e.  NN  x  e.  A  <->  E. n  e.  NN  x  e.  ( A  \ 
U_ k  e.  ( 1..^ n ) B ) )
67 eliun 3909 . . 3  |-  ( x  e.  U_ n  e.  NN  A  <->  E. n  e.  NN  x  e.  A
)
68 eliun 3909 . . 3  |-  ( x  e.  U_ n  e.  NN  ( A  \  U_ k  e.  (
1..^ n ) B )  <->  E. n  e.  NN  x  e.  ( A  \ 
U_ k  e.  ( 1..^ n ) B ) )
6966, 67, 683bitr4i 268 . 2  |-  ( x  e.  U_ n  e.  NN  A  <->  x  e.  U_ n  e.  NN  ( A  \  U_ k  e.  ( 1..^ n ) B ) )
7069eqriv 2280 1  |-  U_ n  e.  NN  A  =  U_ n  e.  NN  ( A  \  U_ k  e.  ( 1..^ n ) B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   {crab 2547   [_csb 3081    \ cdif 3149    C_ wss 3152   (/)c0 3455   U_ciun 3905   class class class wbr 4023   `'ccnv 4688   ` cfv 5255  (class class class)co 5858   supcsup 7193   RRcr 8736   1c1 8738    < clt 8867    <_ cle 8868   NNcn 9746   ZZ>=cuz 10230  ..^cfzo 10870
This theorem is referenced by:  iunmbl  18910  volsup  18913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871
  Copyright terms: Public domain W3C validator