MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundisj2 Unicode version

Theorem iundisj2 19396
Description: A disjoint union is disjoint. (Contributed by Mario Carneiro, 4-Jul-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
iundisj.1  |-  ( n  =  k  ->  A  =  B )
Assertion
Ref Expression
iundisj2  |- Disj  n  e.  NN ( A  \  U_ k  e.  (
1..^ n ) B )
Distinct variable groups:    k, n    A, k    B, n
Allowed substitution hints:    A( n)    B( k)

Proof of Theorem iundisj2
Dummy variables  a 
b  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1327 . . . 4  |-  T.
2 eqeq12 2416 . . . . . 6  |-  ( ( a  =  x  /\  b  =  y )  ->  ( a  =  b  <-> 
x  =  y ) )
3 csbeq1 3214 . . . . . . . 8  |-  ( a  =  x  ->  [_ a  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  =  [_ x  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )
4 csbeq1 3214 . . . . . . . 8  |-  ( b  =  y  ->  [_ b  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  =  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )
53, 4ineqan12d 3504 . . . . . . 7  |-  ( ( a  =  x  /\  b  =  y )  ->  ( [_ a  /  n ]_ ( A  \  U_ k  e.  (
1..^ n ) B )  i^i  [_ b  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (
[_ x  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B ) ) )
65eqeq1d 2412 . . . . . 6  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( [_ a  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  i^i  [_ b  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/)  <->  ( [_ x  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) )
72, 6orbi12d 691 . . . . 5  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( a  =  b  \/  ( [_ a  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ b  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) 
<->  ( x  =  y  \/  ( [_ x  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) ) )
8 eqeq12 2416 . . . . . . 7  |-  ( ( a  =  y  /\  b  =  x )  ->  ( a  =  b  <-> 
y  =  x ) )
9 equcom 1688 . . . . . . 7  |-  ( y  =  x  <->  x  =  y )
108, 9syl6bb 253 . . . . . 6  |-  ( ( a  =  y  /\  b  =  x )  ->  ( a  =  b  <-> 
x  =  y ) )
11 csbeq1 3214 . . . . . . . . 9  |-  ( a  =  y  ->  [_ a  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  =  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )
12 csbeq1 3214 . . . . . . . . 9  |-  ( b  =  x  ->  [_ b  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  =  [_ x  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )
1311, 12ineqan12d 3504 . . . . . . . 8  |-  ( ( a  =  y  /\  b  =  x )  ->  ( [_ a  /  n ]_ ( A  \  U_ k  e.  (
1..^ n ) B )  i^i  [_ b  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (
[_ y  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ x  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B ) ) )
14 incom 3493 . . . . . . . 8  |-  ( [_ y  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ x  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (
[_ x  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B ) )
1513, 14syl6eq 2452 . . . . . . 7  |-  ( ( a  =  y  /\  b  =  x )  ->  ( [_ a  /  n ]_ ( A  \  U_ k  e.  (
1..^ n ) B )  i^i  [_ b  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (
[_ x  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B ) ) )
1615eqeq1d 2412 . . . . . 6  |-  ( ( a  =  y  /\  b  =  x )  ->  ( ( [_ a  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  i^i  [_ b  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/)  <->  ( [_ x  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) )
1710, 16orbi12d 691 . . . . 5  |-  ( ( a  =  y  /\  b  =  x )  ->  ( ( a  =  b  \/  ( [_ a  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ b  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) 
<->  ( x  =  y  \/  ( [_ x  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) ) )
18 nnssre 9960 . . . . . 6  |-  NN  C_  RR
1918a1i 11 . . . . 5  |-  (  T. 
->  NN  C_  RR )
20 biidd 229 . . . . 5  |-  ( (  T.  /\  ( x  e.  NN  /\  y  e.  NN ) )  -> 
( ( x  =  y  \/  ( [_ x  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) 
<->  ( x  =  y  \/  ( [_ x  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) ) )
21 necom 2648 . . . . . . . . 9  |-  ( y  =/=  x  <->  x  =/=  y )
22 df-ne 2569 . . . . . . . . 9  |-  ( x  =/=  y  <->  -.  x  =  y )
2321, 22bitri 241 . . . . . . . 8  |-  ( y  =/=  x  <->  -.  x  =  y )
24 nnre 9963 . . . . . . . . . 10  |-  ( x  e.  NN  ->  x  e.  RR )
25 nnre 9963 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  e.  RR )
26 id 20 . . . . . . . . . 10  |-  ( x  <_  y  ->  x  <_  y )
27 leltne 9120 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <_  y )  ->  (
x  <  y  <->  y  =/=  x ) )
2824, 25, 26, 27syl3an 1226 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <_  y )  ->  (
x  <  y  <->  y  =/=  x ) )
29 vex 2919 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
30 nfcsb1v 3243 . . . . . . . . . . . . . . . 16  |-  F/_ n [_ x  /  n ]_ A
31 nfcv 2540 . . . . . . . . . . . . . . . 16  |-  F/_ n U_ k  e.  (
1..^ x ) B
3230, 31nfdif 3428 . . . . . . . . . . . . . . 15  |-  F/_ n
( [_ x  /  n ]_ A  \  U_ k  e.  ( 1..^ x ) B )
33 csbeq1a 3219 . . . . . . . . . . . . . . . 16  |-  ( n  =  x  ->  A  =  [_ x  /  n ]_ A )
34 oveq2 6048 . . . . . . . . . . . . . . . . 17  |-  ( n  =  x  ->  (
1..^ n )  =  ( 1..^ x ) )
3534iuneq1d 4076 . . . . . . . . . . . . . . . 16  |-  ( n  =  x  ->  U_ k  e.  ( 1..^ n ) B  =  U_ k  e.  ( 1..^ x ) B )
3633, 35difeq12d 3426 . . . . . . . . . . . . . . 15  |-  ( n  =  x  ->  ( A  \  U_ k  e.  ( 1..^ n ) B )  =  (
[_ x  /  n ]_ A  \  U_ k  e.  ( 1..^ x ) B ) )
3729, 32, 36csbief 3252 . . . . . . . . . . . . . 14  |-  [_ x  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  =  ( [_ x  /  n ]_ A  \ 
U_ k  e.  ( 1..^ x ) B )
38 vex 2919 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
39 nfcsb1v 3243 . . . . . . . . . . . . . . . 16  |-  F/_ n [_ y  /  n ]_ A
40 nfcv 2540 . . . . . . . . . . . . . . . 16  |-  F/_ n U_ k  e.  (
1..^ y ) B
4139, 40nfdif 3428 . . . . . . . . . . . . . . 15  |-  F/_ n
( [_ y  /  n ]_ A  \  U_ k  e.  ( 1..^ y ) B )
42 csbeq1a 3219 . . . . . . . . . . . . . . . 16  |-  ( n  =  y  ->  A  =  [_ y  /  n ]_ A )
43 oveq2 6048 . . . . . . . . . . . . . . . . 17  |-  ( n  =  y  ->  (
1..^ n )  =  ( 1..^ y ) )
4443iuneq1d 4076 . . . . . . . . . . . . . . . 16  |-  ( n  =  y  ->  U_ k  e.  ( 1..^ n ) B  =  U_ k  e.  ( 1..^ y ) B )
4542, 44difeq12d 3426 . . . . . . . . . . . . . . 15  |-  ( n  =  y  ->  ( A  \  U_ k  e.  ( 1..^ n ) B )  =  (
[_ y  /  n ]_ A  \  U_ k  e.  ( 1..^ y ) B ) )
4638, 41, 45csbief 3252 . . . . . . . . . . . . . 14  |-  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  =  ( [_ y  /  n ]_ A  \ 
U_ k  e.  ( 1..^ y ) B )
4737, 46ineq12i 3500 . . . . . . . . . . . . 13  |-  ( [_ x  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  ( ( [_ x  /  n ]_ A  \  U_ k  e.  ( 1..^ x ) B )  i^i  ( [_ y  /  n ]_ A  \  U_ k  e.  (
1..^ y ) B ) )
48 simp1 957 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <  y )  ->  x  e.  NN )
49 nnuz 10477 . . . . . . . . . . . . . . . . . 18  |-  NN  =  ( ZZ>= `  1 )
5048, 49syl6eleq 2494 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <  y )  ->  x  e.  ( ZZ>= `  1 )
)
51 simp2 958 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <  y )  ->  y  e.  NN )
5251nnzd 10330 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <  y )  ->  y  e.  ZZ )
53 simp3 959 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <  y )  ->  x  <  y )
54 elfzo2 11098 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 1..^ y )  <->  ( x  e.  ( ZZ>= `  1 )  /\  y  e.  ZZ  /\  x  <  y ) )
5550, 52, 53, 54syl3anbrc 1138 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <  y )  ->  x  e.  ( 1..^ y ) )
56 nfcv 2540 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ n
k
57 nfcv 2540 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ n B
58 iundisj.1 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  k  ->  A  =  B )
5956, 57, 58csbhypf 3246 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  k  ->  [_ x  /  n ]_ A  =  B )
6059equcoms 1689 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  x  ->  [_ x  /  n ]_ A  =  B )
6160eqcomd 2409 . . . . . . . . . . . . . . . . 17  |-  ( k  =  x  ->  B  =  [_ x  /  n ]_ A )
6261ssiun2s 4095 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1..^ y )  ->  [_ x  /  n ]_ A  C_  U_ k  e.  ( 1..^ y ) B )
6355, 62syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <  y )  ->  [_ x  /  n ]_ A  C_  U_ k  e.  ( 1..^ y ) B )
6463ssdifssd 3445 . . . . . . . . . . . . . 14  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <  y )  ->  ( [_ x  /  n ]_ A  \  U_ k  e.  ( 1..^ x ) B )  C_  U_ k  e.  ( 1..^ y ) B )
65 ssrin 3526 . . . . . . . . . . . . . 14  |-  ( (
[_ x  /  n ]_ A  \  U_ k  e.  ( 1..^ x ) B )  C_  U_ k  e.  ( 1..^ y ) B  ->  ( ( [_ x  /  n ]_ A  \  U_ k  e.  ( 1..^ x ) B )  i^i  ( [_ y  /  n ]_ A  \  U_ k  e.  ( 1..^ y ) B ) )  C_  ( U_ k  e.  ( 1..^ y ) B  i^i  ( [_ y  /  n ]_ A  \  U_ k  e.  (
1..^ y ) B ) ) )
6664, 65syl 16 . . . . . . . . . . . . 13  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <  y )  ->  (
( [_ x  /  n ]_ A  \  U_ k  e.  ( 1..^ x ) B )  i^i  ( [_ y  /  n ]_ A  \  U_ k  e.  ( 1..^ y ) B ) )  C_  ( U_ k  e.  ( 1..^ y ) B  i^i  ( [_ y  /  n ]_ A  \  U_ k  e.  (
1..^ y ) B ) ) )
6747, 66syl5eqss 3352 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <  y )  ->  ( [_ x  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B ) )  C_  ( U_ k  e.  ( 1..^ y ) B  i^i  ( [_ y  /  n ]_ A  \  U_ k  e.  ( 1..^ y ) B ) ) )
68 disjdif 3660 . . . . . . . . . . . 12  |-  ( U_ k  e.  ( 1..^ y ) B  i^i  ( [_ y  /  n ]_ A  \  U_ k  e.  ( 1..^ y ) B ) )  =  (/)
69 sseq0 3619 . . . . . . . . . . . 12  |-  ( ( ( [_ x  /  n ]_ ( A  \  U_ k  e.  (
1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  C_  ( U_ k  e.  (
1..^ y ) B  i^i  ( [_ y  /  n ]_ A  \  U_ k  e.  (
1..^ y ) B ) )  /\  ( U_ k  e.  (
1..^ y ) B  i^i  ( [_ y  /  n ]_ A  \  U_ k  e.  (
1..^ y ) B ) )  =  (/) )  ->  ( [_ x  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) )
7067, 68, 69sylancl 644 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <  y )  ->  ( [_ x  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B ) )  =  (/) )
71703expia 1155 . . . . . . . . . 10  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( x  <  y  ->  ( [_ x  /  n ]_ ( A  \  U_ k  e.  (
1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) )
72713adant3 977 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <_  y )  ->  (
x  <  y  ->  (
[_ x  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) )
7328, 72sylbird 227 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <_  y )  ->  (
y  =/=  x  -> 
( [_ x  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) )
7423, 73syl5bir 210 . . . . . . 7  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <_  y )  ->  ( -.  x  =  y  ->  ( [_ x  /  n ]_ ( A  \  U_ k  e.  (
1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) )
7574orrd 368 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  NN  /\  x  <_  y )  ->  (
x  =  y  \/  ( [_ x  /  n ]_ ( A  \  U_ k  e.  (
1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) )
7675adantl 453 . . . . 5  |-  ( (  T.  /\  ( x  e.  NN  /\  y  e.  NN  /\  x  <_ 
y ) )  -> 
( x  =  y  \/  ( [_ x  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) )
777, 17, 19, 20, 76wlogle 9516 . . . 4  |-  ( (  T.  /\  ( x  e.  NN  /\  y  e.  NN ) )  -> 
( x  =  y  \/  ( [_ x  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) )
781, 77mpan 652 . . 3  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( x  =  y  \/  ( [_ x  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) )
7978rgen2a 2732 . 2  |-  A. x  e.  NN  A. y  e.  NN  ( x  =  y  \/  ( [_ x  /  n ]_ ( A  \  U_ k  e.  ( 1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) )
80 disjors 4158 . 2  |-  (Disj  n  e.  NN ( A  \  U_ k  e.  (
1..^ n ) B )  <->  A. x  e.  NN  A. y  e.  NN  (
x  =  y  \/  ( [_ x  /  n ]_ ( A  \  U_ k  e.  (
1..^ n ) B )  i^i  [_ y  /  n ]_ ( A 
\  U_ k  e.  ( 1..^ n ) B ) )  =  (/) ) )
8179, 80mpbir 201 1  |- Disj  n  e.  NN ( A  \  U_ k  e.  (
1..^ n ) B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    T. wtru 1322    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   [_csb 3211    \ cdif 3277    i^i cin 3279    C_ wss 3280   (/)c0 3588   U_ciun 4053  Disj wdisj 4142   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   RRcr 8945   1c1 8947    < clt 9076    <_ cle 9077   NNcn 9956   ZZcz 10238   ZZ>=cuz 10444  ..^cfzo 11090
This theorem is referenced by:  iunmbl  19400  volsup  19403  voliunnfl  26149
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-fzo 11091
  Copyright terms: Public domain W3C validator