Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundisjf Structured version   Unicode version

Theorem iundisjf 24022
Description: Rewrite a countable union as a disjoint union. Cf. iundisj 19435 (Contributed by Thierry Arnoux, 31-Dec-2016.)
Hypotheses
Ref Expression
iundisjf.1  |-  F/_ k A
iundisjf.2  |-  F/_ n B
iundisjf.3  |-  ( n  =  k  ->  A  =  B )
Assertion
Ref Expression
iundisjf  |-  U_ n  e.  NN  A  =  U_ n  e.  NN  ( A  \  U_ k  e.  ( 1..^ n ) B )
Distinct variable group:    k, n
Allowed substitution hints:    A( k, n)    B( k, n)

Proof of Theorem iundisjf
Dummy variables  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3421 . . . . . . . . . 10  |-  { n  e.  NN  |  x  e.  A }  C_  NN
2 nnuz 10514 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
31, 2sseqtri 3373 . . . . . . . . 9  |-  { n  e.  NN  |  x  e.  A }  C_  ( ZZ>=
`  1 )
4 rabn0 3640 . . . . . . . . . 10  |-  ( { n  e.  NN  |  x  e.  A }  =/=  (/)  <->  E. n  e.  NN  x  e.  A )
54biimpri 198 . . . . . . . . 9  |-  ( E. n  e.  NN  x  e.  A  ->  { n  e.  NN  |  x  e.  A }  =/=  (/) )
6 infmssuzcl 10552 . . . . . . . . 9  |-  ( ( { n  e.  NN  |  x  e.  A }  C_  ( ZZ>= `  1
)  /\  { n  e.  NN  |  x  e.  A }  =/=  (/) )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  x  e.  A } )
73, 5, 6sylancr 645 . . . . . . . 8  |-  ( E. n  e.  NN  x  e.  A  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  {
n  e.  NN  |  x  e.  A }
)
8 nfrab1 2881 . . . . . . . . . 10  |-  F/_ n { n  e.  NN  |  x  e.  A }
9 nfcv 2572 . . . . . . . . . 10  |-  F/_ n RR
10 nfcv 2572 . . . . . . . . . 10  |-  F/_ n `'  <
118, 9, 10nfsup 7449 . . . . . . . . 9  |-  F/_ n sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )
12 nfcv 2572 . . . . . . . . 9  |-  F/_ n NN
1311nfcsb1 3275 . . . . . . . . . 10  |-  F/_ n [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A
1413nfcri 2566 . . . . . . . . 9  |-  F/ n  x  e.  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A
15 csbeq1a 3252 . . . . . . . . . 10  |-  ( n  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  A  =  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A )
1615eleq2d 2503 . . . . . . . . 9  |-  ( n  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( x  e.  A  <->  x  e.  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A ) )
1711, 12, 14, 16elrabf 3084 . . . . . . . 8  |-  ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  x  e.  A } 
<->  ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN  /\  x  e.  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A
) )
187, 17sylib 189 . . . . . . 7  |-  ( E. n  e.  NN  x  e.  A  ->  ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN  /\  x  e. 
[_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A ) )
1918simpld 446 . . . . . 6  |-  ( E. n  e.  NN  x  e.  A  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN )
2018simprd 450 . . . . . . 7  |-  ( E. n  e.  NN  x  e.  A  ->  x  e. 
[_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A )
2119nnred 10008 . . . . . . . . 9  |-  ( E. n  e.  NN  x  e.  A  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  RR )
2221ltnrd 9200 . . . . . . . 8  |-  ( E. n  e.  NN  x  e.  A  ->  -.  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
23 eliun 4090 . . . . . . . . 9  |-  ( x  e.  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B  <->  E. k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) x  e.  B )
24 nfcv 2572 . . . . . . . . . . 11  |-  F/_ k NN
25 iundisjf.1 . . . . . . . . . . . 12  |-  F/_ k A
2625nfcri 2566 . . . . . . . . . . 11  |-  F/ k  x  e.  A
2724, 26nfrex 2754 . . . . . . . . . 10  |-  F/ k E. n  e.  NN  x  e.  A
2826, 24nfrab 2882 . . . . . . . . . . . 12  |-  F/_ k { n  e.  NN  |  x  e.  A }
29 nfcv 2572 . . . . . . . . . . . 12  |-  F/_ k RR
30 nfcv 2572 . . . . . . . . . . . 12  |-  F/_ k `'  <
3128, 29, 30nfsup 7449 . . . . . . . . . . 11  |-  F/_ k sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )
32 nfcv 2572 . . . . . . . . . . 11  |-  F/_ k  <
3331, 32, 31nfbr 4249 . . . . . . . . . 10  |-  F/ k sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )
3421ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  RR )
35 elfzouz 11137 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )  -> 
k  e.  ( ZZ>= ` 
1 ) )
3635, 2syl6eleqr 2527 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )  -> 
k  e.  NN )
3736ad2antlr 708 . . . . . . . . . . . . 13  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  e.  NN )
3837nnred 10008 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  e.  RR )
39 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  x  e.  B )
40 nfcv 2572 . . . . . . . . . . . . . . 15  |-  F/_ n
k
41 iundisjf.2 . . . . . . . . . . . . . . . 16  |-  F/_ n B
4241nfcri 2566 . . . . . . . . . . . . . . 15  |-  F/ n  x  e.  B
43 iundisjf.3 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  A  =  B )
4443eleq2d 2503 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
x  e.  A  <->  x  e.  B ) )
4540, 12, 42, 44elrabf 3084 . . . . . . . . . . . . . 14  |-  ( k  e.  { n  e.  NN  |  x  e.  A }  <->  ( k  e.  NN  /\  x  e.  B ) )
4637, 39, 45sylanbrc 646 . . . . . . . . . . . . 13  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  e.  { n  e.  NN  |  x  e.  A } )
47 infmssuzle 10551 . . . . . . . . . . . . 13  |-  ( ( { n  e.  NN  |  x  e.  A }  C_  ( ZZ>= `  1
)  /\  k  e.  { n  e.  NN  |  x  e.  A }
)  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <_  k
)
483, 46, 47sylancr 645 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <_  k
)
49 elfzolt2 11141 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )  -> 
k  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
5049ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
5134, 38, 34, 48, 50lelttrd 9221 . . . . . . . . . . 11  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
5251exp31 588 . . . . . . . . . 10  |-  ( E. n  e.  NN  x  e.  A  ->  ( k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )  -> 
( x  e.  B  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) ) )
5327, 33, 52rexlimd 2820 . . . . . . . . 9  |-  ( E. n  e.  NN  x  e.  A  ->  ( E. k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) x  e.  B  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
5423, 53syl5bi 209 . . . . . . . 8  |-  ( E. n  e.  NN  x  e.  A  ->  ( x  e.  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
5522, 54mtod 170 . . . . . . 7  |-  ( E. n  e.  NN  x  e.  A  ->  -.  x  e.  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B )
5620, 55eldifd 3324 . . . . . 6  |-  ( E. n  e.  NN  x  e.  A  ->  x  e.  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) )
57 csbeq1 3247 . . . . . . . . 9  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  [_ m  /  n ]_ A  =  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A )
5831nfeq2 2583 . . . . . . . . . 10  |-  F/ k  m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )
59 nfcv 2572 . . . . . . . . . 10  |-  F/_ k
( 1..^ m )
60 nfcv 2572 . . . . . . . . . . 11  |-  F/_ k
1
61 nfcv 2572 . . . . . . . . . . 11  |-  F/_ k..^
6260, 61, 31nfov 6097 . . . . . . . . . 10  |-  F/_ k
( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
63 oveq2 6082 . . . . . . . . . 10  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( 1..^ m )  =  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
64 eqidd 2437 . . . . . . . . . 10  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  B  =  B )
6558, 59, 62, 63, 64iuneq12df 24001 . . . . . . . . 9  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  U_ k  e.  ( 1..^ m ) B  =  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B )
6657, 65difeq12d 3459 . . . . . . . 8  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( [_ m  /  n ]_ A  \  U_ k  e.  (
1..^ m ) B )  =  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) )
6766eleq2d 2503 . . . . . . 7  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( x  e.  ( [_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B )  <-> 
x  e.  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) ) )
6867rspcev 3045 . . . . . 6  |-  ( ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN  /\  x  e.  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) )  ->  E. m  e.  NN  x  e.  (
[_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) )
6919, 56, 68syl2anc 643 . . . . 5  |-  ( E. n  e.  NN  x  e.  A  ->  E. m  e.  NN  x  e.  (
[_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) )
70 nfv 1629 . . . . . 6  |-  F/ m  x  e.  ( A  \ 
U_ k  e.  ( 1..^ n ) B )
71 nfcsb1v 3276 . . . . . . . 8  |-  F/_ n [_ m  /  n ]_ A
72 nfcv 2572 . . . . . . . . 9  |-  F/_ n
( 1..^ m )
7372, 41nfiun 4112 . . . . . . . 8  |-  F/_ n U_ k  e.  (
1..^ m ) B
7471, 73nfdif 3461 . . . . . . 7  |-  F/_ n
( [_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B )
7574nfcri 2566 . . . . . 6  |-  F/ n  x  e.  ( [_ m  /  n ]_ A  \ 
U_ k  e.  ( 1..^ m ) B )
76 csbeq1a 3252 . . . . . . . 8  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
77 oveq2 6082 . . . . . . . . 9  |-  ( n  =  m  ->  (
1..^ n )  =  ( 1..^ m ) )
7877iuneq1d 4109 . . . . . . . 8  |-  ( n  =  m  ->  U_ k  e.  ( 1..^ n ) B  =  U_ k  e.  ( 1..^ m ) B )
7976, 78difeq12d 3459 . . . . . . 7  |-  ( n  =  m  ->  ( A  \  U_ k  e.  ( 1..^ n ) B )  =  (
[_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) )
8079eleq2d 2503 . . . . . 6  |-  ( n  =  m  ->  (
x  e.  ( A 
\  U_ k  e.  ( 1..^ n ) B )  <->  x  e.  ( [_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) ) )
8170, 75, 80cbvrex 2922 . . . . 5  |-  ( E. n  e.  NN  x  e.  ( A  \  U_ k  e.  ( 1..^ n ) B )  <->  E. m  e.  NN  x  e.  ( [_ m  /  n ]_ A  \ 
U_ k  e.  ( 1..^ m ) B ) )
8269, 81sylibr 204 . . . 4  |-  ( E. n  e.  NN  x  e.  A  ->  E. n  e.  NN  x  e.  ( A  \  U_ k  e.  ( 1..^ n ) B ) )
83 eldifi 3462 . . . . 5  |-  ( x  e.  ( A  \  U_ k  e.  (
1..^ n ) B )  ->  x  e.  A )
8483reximi 2806 . . . 4  |-  ( E. n  e.  NN  x  e.  ( A  \  U_ k  e.  ( 1..^ n ) B )  ->  E. n  e.  NN  x  e.  A )
8582, 84impbii 181 . . 3  |-  ( E. n  e.  NN  x  e.  A  <->  E. n  e.  NN  x  e.  ( A  \ 
U_ k  e.  ( 1..^ n ) B ) )
86 eliun 4090 . . 3  |-  ( x  e.  U_ n  e.  NN  A  <->  E. n  e.  NN  x  e.  A
)
87 eliun 4090 . . 3  |-  ( x  e.  U_ n  e.  NN  ( A  \  U_ k  e.  (
1..^ n ) B )  <->  E. n  e.  NN  x  e.  ( A  \ 
U_ k  e.  ( 1..^ n ) B ) )
8885, 86, 873bitr4i 269 . 2  |-  ( x  e.  U_ n  e.  NN  A  <->  x  e.  U_ n  e.  NN  ( A  \  U_ k  e.  ( 1..^ n ) B ) )
8988eqriv 2433 1  |-  U_ n  e.  NN  A  =  U_ n  e.  NN  ( A  \  U_ k  e.  ( 1..^ n ) B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   F/_wnfc 2559    =/= wne 2599   E.wrex 2699   {crab 2702   [_csb 3244    \ cdif 3310    C_ wss 3313   (/)c0 3621   U_ciun 4086   class class class wbr 4205   `'ccnv 4870   ` cfv 5447  (class class class)co 6074   supcsup 7438   RRcr 8982   1c1 8984    < clt 9113    <_ cle 9114   NNcn 9993   ZZ>=cuz 10481  ..^cfzo 11128
This theorem is referenced by:  iundisjcnt  24147
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-er 6898  df-en 7103  df-dom 7104  df-sdom 7105  df-sup 7439  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-nn 9994  df-n0 10215  df-z 10276  df-uz 10482  df-fz 11037  df-fzo 11129
  Copyright terms: Public domain W3C validator