MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundom Unicode version

Theorem iundom 8180
Description: An upper bound for the cardinality of an indexed union.  C depends on  x and should be thought of as  C ( x ). (Contributed by NM, 26-Mar-2006.)
Assertion
Ref Expression
iundom  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  C  ~<_  ( A  X.  B ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    C( x)    V( x)

Proof of Theorem iundom
StepHypRef Expression
1 eqid 2296 . 2  |-  U_ x  e.  A  ( {
x }  X.  C
)  =  U_ x  e.  A  ( {
x }  X.  C
)
2 simpl 443 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  A  e.  V )
3 ovex 5899 . . . . . 6  |-  ( B  ^m  C )  e. 
_V
43rgenw 2623 . . . . 5  |-  A. x  e.  A  ( B  ^m  C )  e.  _V
5 iunexg 5783 . . . . 5  |-  ( ( A  e.  V  /\  A. x  e.  A  ( B  ^m  C )  e.  _V )  ->  U_ x  e.  A  ( B  ^m  C )  e.  _V )
62, 4, 5sylancl 643 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  ( B  ^m  C )  e.  _V )
7 numth3 8113 . . . 4  |-  ( U_ x  e.  A  ( B  ^m  C )  e. 
_V  ->  U_ x  e.  A  ( B  ^m  C )  e.  dom  card )
86, 7syl 15 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  ( B  ^m  C )  e.  dom  card )
9 numacn 7692 . . 3  |-  ( A  e.  V  ->  ( U_ x  e.  A  ( B  ^m  C )  e.  dom  card  ->  U_ x  e.  A  ( B  ^m  C )  e. AC  A ) )
102, 8, 9sylc 56 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  ( B  ^m  C )  e. AC  A )
11 simpr 447 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  A. x  e.  A  C  ~<_  B )
12 reldom 6885 . . . . . 6  |-  Rel  ~<_
1312brrelexi 4745 . . . . 5  |-  ( C  ~<_  B  ->  C  e.  _V )
1413ralimi 2631 . . . 4  |-  ( A. x  e.  A  C  ~<_  B  ->  A. x  e.  A  C  e.  _V )
15 iunexg 5783 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  C  e.  _V )  ->  U_ x  e.  A  C  e.  _V )
1614, 15sylan2 460 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  C  e.  _V )
171, 10, 11iundom2g 8178 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  ( {
x }  X.  C
)  ~<_  ( A  X.  B ) )
1812brrelex2i 4746 . . . 4  |-  ( U_ x  e.  A  ( { x }  X.  C )  ~<_  ( A  X.  B )  -> 
( A  X.  B
)  e.  _V )
19 numth3 8113 . . . 4  |-  ( ( A  X.  B )  e.  _V  ->  ( A  X.  B )  e. 
dom  card )
2017, 18, 193syl 18 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  ( A  X.  B )  e. 
dom  card )
21 numacn 7692 . . 3  |-  ( U_ x  e.  A  C  e.  _V  ->  ( ( A  X.  B )  e. 
dom  card  ->  ( A  X.  B )  e. AC  U_ x  e.  A  C )
)
2216, 20, 21sylc 56 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  ( A  X.  B )  e. AC  U_ x  e.  A  C
)
231, 10, 11, 22iundomg 8179 1  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  C  ~<_  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1696   A.wral 2556   _Vcvv 2801   {csn 3653   U_ciun 3921   class class class wbr 4039    X. cxp 4703   dom cdm 4705  (class class class)co 5874    ^m cmap 6788    ~<_ cdom 6877   cardccrd 7584  AC wacn 7587
This theorem is referenced by:  unidom  8181  alephreg  8220  inar1  8413
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-ac2 8105
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-card 7588  df-acn 7591  df-ac 7759
  Copyright terms: Public domain W3C validator