MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq2 Unicode version

Theorem iuneq2 4051
Description: Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
iuneq2  |-  ( A. x  e.  A  B  =  C  ->  U_ x  e.  A  B  =  U_ x  e.  A  C
)

Proof of Theorem iuneq2
StepHypRef Expression
1 ss2iun 4050 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  U_ x  e.  A  B  C_  U_ x  e.  A  C )
2 ss2iun 4050 . . 3  |-  ( A. x  e.  A  C  C_  B  ->  U_ x  e.  A  C  C_  U_ x  e.  A  B )
31, 2anim12i 550 . 2  |-  ( ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B )  ->  ( U_ x  e.  A  B  C_  U_ x  e.  A  C  /\  U_ x  e.  A  C  C_ 
U_ x  e.  A  B ) )
4 eqss 3306 . . . 4  |-  ( B  =  C  <->  ( B  C_  C  /\  C  C_  B ) )
54ralbii 2673 . . 3  |-  ( A. x  e.  A  B  =  C  <->  A. x  e.  A  ( B  C_  C  /\  C  C_  B ) )
6 r19.26 2781 . . 3  |-  ( A. x  e.  A  ( B  C_  C  /\  C  C_  B )  <->  ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B
) )
75, 6bitri 241 . 2  |-  ( A. x  e.  A  B  =  C  <->  ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B ) )
8 eqss 3306 . 2  |-  ( U_ x  e.  A  B  =  U_ x  e.  A  C 
<->  ( U_ x  e.  A  B  C_  U_ x  e.  A  C  /\  U_ x  e.  A  C  C_ 
U_ x  e.  A  B ) )
93, 7, 83imtr4i 258 1  |-  ( A. x  e.  A  B  =  C  ->  U_ x  e.  A  B  =  U_ x  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649   A.wral 2649    C_ wss 3263   U_ciun 4035
This theorem is referenced by:  iuneq2i  4053  iuneq2dv  4056  abianfplem  6651  oa0r  6718  om0r  6719  om1r  6722  oe1m  6724  oaass  6740  oarec  6741  omass  6759  oeoalem  6775  oeoelem  6777  cardiun  7802  kmlem11  7973  iuncld  17032  comppfsc  26078  istotbnd3  26171  sstotbnd  26175  heibor  26221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ral 2654  df-rex 2655  df-v 2901  df-in 3270  df-ss 3277  df-iun 4037
  Copyright terms: Public domain W3C validator