MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunexg Unicode version

Theorem iunexg 5808
Description: The existence of an indexed union.  x is normally a free-variable parameter in  B. (Contributed by NM, 23-Mar-2006.)
Assertion
Ref Expression
iunexg  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  W )  ->  U_ x  e.  A  B  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)    W( x)

Proof of Theorem iunexg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 3972 . . 3  |-  ( A. x  e.  A  B  e.  W  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
21adantl 452 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  W )  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
3 abrexexg 5805 . . . 4  |-  ( A  e.  V  ->  { y  |  E. x  e.  A  y  =  B }  e.  _V )
4 uniexg 4554 . . . 4  |-  ( { y  |  E. x  e.  A  y  =  B }  e.  _V  ->  U. { y  |  E. x  e.  A  y  =  B }  e.  _V )
53, 4syl 15 . . 3  |-  ( A  e.  V  ->  U. {
y  |  E. x  e.  A  y  =  B }  e.  _V )
65adantr 451 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  W )  ->  U. {
y  |  E. x  e.  A  y  =  B }  e.  _V )
72, 6eqeltrd 2390 1  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  W )  ->  U_ x  e.  A  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1633    e. wcel 1701   {cab 2302   A.wral 2577   E.wrex 2578   _Vcvv 2822   U.cuni 3864   U_ciun 3942
This theorem is referenced by:  abrexex2g  5809  opabex3d  5810  opabex3  5811  iunex  5812  xpexgALT  6112  mpt2exxg  6237  ixpexg  6883  ixpssmapg  6889  iundom  8209  iunctb  8241  imasplusg  13469  imasmulr  13470  imasvsca  13472  gsum2d2  15274  gsumcom2  15275  dprd2da  15326  ptcls  17366  ptcmplem2  17799  cnextfval  23412  trpredtr  24618  trpredmintr  24619  trpredrec  24626  bnj535  28433  bnj546  28439  bnj893  28471  bnj1136  28538  bnj1413  28576
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300
  Copyright terms: Public domain W3C validator