MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfo Unicode version

Theorem iunfo 8349
Description: Existence of an onto function from a disjoint union to a union. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 18-Jan-2014.)
Hypothesis
Ref Expression
iunfo.1  |-  T  = 
U_ x  e.  A  ( { x }  X.  B )
Assertion
Ref Expression
iunfo  |-  ( 2nd  |`  T ) : T -onto-> U_ x  e.  A  B
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    T( x)

Proof of Theorem iunfo
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fo2nd 6308 . . . 4  |-  2nd : _V -onto-> _V
2 fof 5595 . . . 4  |-  ( 2nd
: _V -onto-> _V  ->  2nd
: _V --> _V )
3 ffn 5533 . . . 4  |-  ( 2nd
: _V --> _V  ->  2nd 
Fn  _V )
41, 2, 3mp2b 10 . . 3  |-  2nd  Fn  _V
5 ssv 3313 . . 3  |-  T  C_  _V
6 fnssres 5500 . . 3  |-  ( ( 2nd  Fn  _V  /\  T  C_  _V )  -> 
( 2nd  |`  T )  Fn  T )
74, 5, 6mp2an 654 . 2  |-  ( 2nd  |`  T )  Fn  T
8 df-ima 4833 . . 3  |-  ( 2nd " T )  =  ran  ( 2nd  |`  T )
9 iunfo.1 . . . . . . . . . . 11  |-  T  = 
U_ x  e.  A  ( { x }  X.  B )
109eleq2i 2453 . . . . . . . . . 10  |-  ( z  e.  T  <->  z  e.  U_ x  e.  A  ( { x }  X.  B ) )
11 eliun 4041 . . . . . . . . . 10  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  <->  E. x  e.  A  z  e.  ( { x }  X.  B ) )
1210, 11bitri 241 . . . . . . . . 9  |-  ( z  e.  T  <->  E. x  e.  A  z  e.  ( { x }  X.  B ) )
13 xp2nd 6318 . . . . . . . . . . 11  |-  ( z  e.  ( { x }  X.  B )  -> 
( 2nd `  z
)  e.  B )
14 eleq1 2449 . . . . . . . . . . 11  |-  ( ( 2nd `  z )  =  y  ->  (
( 2nd `  z
)  e.  B  <->  y  e.  B ) )
1513, 14syl5ib 211 . . . . . . . . . 10  |-  ( ( 2nd `  z )  =  y  ->  (
z  e.  ( { x }  X.  B
)  ->  y  e.  B ) )
1615reximdv 2762 . . . . . . . . 9  |-  ( ( 2nd `  z )  =  y  ->  ( E. x  e.  A  z  e.  ( {
x }  X.  B
)  ->  E. x  e.  A  y  e.  B ) )
1712, 16syl5bi 209 . . . . . . . 8  |-  ( ( 2nd `  z )  =  y  ->  (
z  e.  T  ->  E. x  e.  A  y  e.  B )
)
1817impcom 420 . . . . . . 7  |-  ( ( z  e.  T  /\  ( 2nd `  z )  =  y )  ->  E. x  e.  A  y  e.  B )
1918rexlimiva 2770 . . . . . 6  |-  ( E. z  e.  T  ( 2nd `  z )  =  y  ->  E. x  e.  A  y  e.  B )
20 nfiu1 4065 . . . . . . . . 9  |-  F/_ x U_ x  e.  A  ( { x }  X.  B )
219, 20nfcxfr 2522 . . . . . . . 8  |-  F/_ x T
22 nfv 1626 . . . . . . . 8  |-  F/ x
( 2nd `  z
)  =  y
2321, 22nfrex 2706 . . . . . . 7  |-  F/ x E. z  e.  T  ( 2nd `  z )  =  y
24 ssiun2 4077 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  ( { x }  X.  B )  C_  U_ x  e.  A  ( {
x }  X.  B
) )
2524adantr 452 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  X.  B )  C_  U_ x  e.  A  ( {
x }  X.  B
) )
26 simpr 448 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  y  e.  B )  ->  y  e.  B )
27 vex 2904 . . . . . . . . . . . . . 14  |-  x  e. 
_V
2827snid 3786 . . . . . . . . . . . . 13  |-  x  e. 
{ x }
29 opelxp 4850 . . . . . . . . . . . . 13  |-  ( <.
x ,  y >.  e.  ( { x }  X.  B )  <->  ( x  e.  { x }  /\  y  e.  B )
)
3028, 29mpbiran 885 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  ( { x }  X.  B )  <->  y  e.  B )
3126, 30sylibr 204 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. x ,  y >.  e.  ( { x }  X.  B ) )
3225, 31sseldd 3294 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. x ,  y >.  e.  U_ x  e.  A  ( { x }  X.  B ) )
3332, 9syl6eleqr 2480 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. x ,  y >.  e.  T )
34 vex 2904 . . . . . . . . . 10  |-  y  e. 
_V
3527, 34op2nd 6297 . . . . . . . . 9  |-  ( 2nd `  <. x ,  y
>. )  =  y
36 fveq2 5670 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( 2nd `  z
)  =  ( 2nd `  <. x ,  y
>. ) )
3736eqeq1d 2397 . . . . . . . . . 10  |-  ( z  =  <. x ,  y
>.  ->  ( ( 2nd `  z )  =  y  <-> 
( 2nd `  <. x ,  y >. )  =  y ) )
3837rspcev 2997 . . . . . . . . 9  |-  ( (
<. x ,  y >.  e.  T  /\  ( 2nd `  <. x ,  y
>. )  =  y
)  ->  E. z  e.  T  ( 2nd `  z )  =  y )
3933, 35, 38sylancl 644 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  B )  ->  E. z  e.  T  ( 2nd `  z )  =  y )
4039ex 424 . . . . . . 7  |-  ( x  e.  A  ->  (
y  e.  B  ->  E. z  e.  T  ( 2nd `  z )  =  y ) )
4123, 40rexlimi 2768 . . . . . 6  |-  ( E. x  e.  A  y  e.  B  ->  E. z  e.  T  ( 2nd `  z )  =  y )
4219, 41impbii 181 . . . . 5  |-  ( E. z  e.  T  ( 2nd `  z )  =  y  <->  E. x  e.  A  y  e.  B )
43 fvelimab 5723 . . . . . 6  |-  ( ( 2nd  Fn  _V  /\  T  C_  _V )  -> 
( y  e.  ( 2nd " T )  <->  E. z  e.  T  ( 2nd `  z )  =  y ) )
444, 5, 43mp2an 654 . . . . 5  |-  ( y  e.  ( 2nd " T
)  <->  E. z  e.  T  ( 2nd `  z )  =  y )
45 eliun 4041 . . . . 5  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
4642, 44, 453bitr4i 269 . . . 4  |-  ( y  e.  ( 2nd " T
)  <->  y  e.  U_ x  e.  A  B
)
4746eqriv 2386 . . 3  |-  ( 2nd " T )  =  U_ x  e.  A  B
488, 47eqtr3i 2411 . 2  |-  ran  ( 2nd  |`  T )  = 
U_ x  e.  A  B
49 df-fo 5402 . 2  |-  ( ( 2nd  |`  T ) : T -onto-> U_ x  e.  A  B 
<->  ( ( 2nd  |`  T )  Fn  T  /\  ran  ( 2nd  |`  T )  =  U_ x  e.  A  B ) )
507, 48, 49mpbir2an 887 1  |-  ( 2nd  |`  T ) : T -onto-> U_ x  e.  A  B
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2652   _Vcvv 2901    C_ wss 3265   {csn 3759   <.cop 3762   U_ciun 4037    X. cxp 4818   ran crn 4821    |` cres 4822   "cima 4823    Fn wfn 5391   -->wf 5392   -onto->wfo 5394   ` cfv 5396   2ndc2nd 6289
This theorem is referenced by:  iundomg  8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-fo 5402  df-fv 5404  df-2nd 6291
  Copyright terms: Public domain W3C validator